Eggeling Christian, Honigmann Alf
MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, OX3 9DS Oxford, United Kingdom.
Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr 108, 01307 Dresden, Germany.
Biochim Biophys Acta. 2016 Oct;1858(10):2558-2568. doi: 10.1016/j.bbamem.2016.03.025. Epub 2016 Mar 31.
Biological membranes are complex composites of lipids, proteins and sugars, which catalyze a myriad of vital cellular reactions in a spatiotemporal tightly controlled manner. Our understanding of the organization principles of biomembranes is limited mainly by the challenge to measure distributions and interactions of lipids and proteins within the complex environment of living cells. With the recent advent of super-resolution optical microscopy (or nanoscopy) one now has approached the molecular scale regime with non-invasive live cell fluorescence observation techniques. Since in silico molecular dynamics (MD) simulation techniques are also improving to study larger and more complex systems we can now start to integrate live-cell and in silico experiments to develop a deeper understanding of biomembranes. In this review we summarize recent progress to measure lipid-protein interactions in living cells and give examples how MD simulations can complement and upgrade the experimental data. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg.
生物膜是脂质、蛋白质和糖类的复杂复合物,它们以时空严格控制的方式催化无数重要的细胞反应。我们对生物膜组织原理的理解主要受到在活细胞复杂环境中测量脂质和蛋白质分布及相互作用这一挑战的限制。随着超分辨率光学显微镜(或纳米显微镜)的近期出现,人们现在已通过非侵入性活细胞荧光观察技术进入了分子尺度领域。由于计算机模拟分子动力学(MD)模拟技术也在不断改进以研究更大、更复杂的系统,我们现在可以开始整合活细胞实验和计算机模拟实验,以更深入地理解生物膜。在这篇综述中,我们总结了在活细胞中测量脂质 - 蛋白质相互作用的最新进展,并举例说明MD模拟如何补充和提升实验数据。本文是由伊尔波·瓦图莱宁(Ilpo Vattulainen)和托马什·罗格(Tomasz Róg)编辑的名为《生物模拟》的特刊的一部分。