Suppr超能文献

由脂质多不饱和驱动的仿生膜中的结构域稳定性

Domain Stability in Biomimetic Membranes Driven by Lipid Polyunsaturation.

作者信息

Lin Xubo, Lorent Joseph H, Skinkle Allison D, Levental Kandice R, Waxham M Neal, Gorfe Alemayehu A, Levental Ilya

机构信息

Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston , Houston, Texas 77030, United States.

Department of Neurobiology and Anatomy, McGovern Medical School, The University of Texas Health Science Center at Houston , Houston, Texas 77030, United States.

出版信息

J Phys Chem B. 2016 Nov 23;120(46):11930-11941. doi: 10.1021/acs.jpcb.6b06815. Epub 2016 Nov 10.

Abstract

Biological membranes contain a broad variety of lipid species whose individual physicochemical properties and collective interactions ultimately determine membrane organization. A key aspect of the organization of cellular membranes is their lateral subdivision into domains of distinct structure and composition. The most widely studied membrane domains are lipid rafts, which are the biological manifestations of liquid-ordered phases that form in sterol-containing membranes. Detailed studies of biomimetic membrane mixtures have yielded wide-ranging insights into the physical principles behind lipid rafts; however, these simplified models do not fully capture the diversity and complexity of the mammalian lipidome, most notably in their exclusion of polyunsaturated lipids. Here, we assess the role of lipid acyl chain unsaturation as a driving force for phase separation using coarse-grained molecular dynamics (CGMD) simulations validated by model membrane experiments. The clear trends in our observations and good qualitative agreements between simulations and experiments support the conclusions that highly unsaturated lipids promote liquid-liquid domain stability by enhancing the differences in cholesterol content and lipid chain order between the coexisting domains. These observations reveal the important role of noncanonical biological lipids in the physical properties of membranes, showing that lipid polyunsaturation is a driving force for liquid-liquid phase separation.

摘要

生物膜包含种类繁多的脂质,其各自的物理化学性质和集体相互作用最终决定了膜的组织结构。细胞膜组织的一个关键方面是它们横向细分为具有不同结构和组成的结构域。研究最广泛的膜结构域是脂筏,它是在含甾醇膜中形成的液相有序相的生物学表现。对仿生膜混合物的详细研究已对脂筏背后的物理原理有了广泛的见解;然而,这些简化模型并未完全捕捉到哺乳动物脂质组的多样性和复杂性,最显著的是它们排除了多不饱和脂质。在这里,我们使用经模型膜实验验证的粗粒度分子动力学(CGMD)模拟来评估脂质酰基链不饱和作为相分离驱动力的作用。我们观察到的明显趋势以及模拟与实验之间良好的定性一致性支持了以下结论:高度不饱和脂质通过增强共存结构域之间胆固醇含量和脂质链有序度的差异来促进液 - 液结构域的稳定性。这些观察结果揭示了非经典生物脂质在膜物理性质中的重要作用,表明脂质多不饱和是液 - 液相分离的驱动力。

相似文献

1
Domain Stability in Biomimetic Membranes Driven by Lipid Polyunsaturation.
J Phys Chem B. 2016 Nov 23;120(46):11930-11941. doi: 10.1021/acs.jpcb.6b06815. Epub 2016 Nov 10.
3
Molecular view of phase coexistence in lipid monolayers.
J Am Chem Soc. 2012 Oct 24;134(42):17543-53. doi: 10.1021/ja304792p. Epub 2012 Oct 12.
4
Polyunsaturated Lipids Regulate Membrane Domain Stability by Tuning Membrane Order.
Biophys J. 2016 Apr 26;110(8):1800-1810. doi: 10.1016/j.bpj.2016.03.012.
5
Composition Fluctuations in Lipid Bilayers.
Biophys J. 2017 Dec 19;113(12):2750-2761. doi: 10.1016/j.bpj.2017.10.009.
7
Transmembrane helices can induce domain formation in crowded model membranes.
Biochim Biophys Acta. 2012 Apr;1818(4):984-94. doi: 10.1016/j.bbamem.2011.08.021. Epub 2011 Aug 22.
8
SPICA Force Field for Lipid Membranes: Domain Formation Induced by Cholesterol.
J Chem Theory Comput. 2019 Jan 8;15(1):762-774. doi: 10.1021/acs.jctc.8b00987. Epub 2018 Dec 18.

引用本文的文献

1
Paradoxes: Cholesterol and Hypoxia in Preeclampsia.
Biomolecules. 2024 Jun 13;14(6):691. doi: 10.3390/biom14060691.
2
Understanding the free-energy landscape of phase separation in lipid bilayers using molecular dynamics.
Biophys J. 2023 Nov 7;122(21):4144-4159. doi: 10.1016/j.bpj.2023.09.012. Epub 2023 Sep 23.
3
A theoretical model of dietary lipid variance as the origin of primary ciliary dysfunction in preeclampsia.
Front Mol Biosci. 2023 May 5;10:1173030. doi: 10.3389/fmolb.2023.1173030. eCollection 2023.
4
Understanding the Free Energy Landscape of Phase Separation in Lipid Bilayers using Molecular Dynamics.
bioRxiv. 2023 Aug 28:2023.01.31.526537. doi: 10.1101/2023.01.31.526537.
5
Role of polyunsaturated phospholipids in liquid-ordered and liquid-disordered phases.
RSC Adv. 2021 Aug 9;11(44):27115-27120. doi: 10.1039/d1ra02692e.
6
Correlative nanophotonic approaches to enlighten the nanoscale dynamics of living cell membranes.
Biochem Soc Trans. 2021 Nov 1;49(5):2357-2369. doi: 10.1042/BST20210457.
7
Nonconverged Constraints Cause Artificial Temperature Gradients in Lipid Bilayer Simulations.
J Phys Chem B. 2021 Aug 26;125(33):9537-9546. doi: 10.1021/acs.jpcb.1c03665. Epub 2021 Aug 16.
8
EPA and DHA differentially modulate membrane elasticity in the presence of cholesterol.
Biophys J. 2021 Jun 1;120(11):2317-2329. doi: 10.1016/j.bpj.2021.04.009. Epub 2021 Apr 19.
9
Structure and Dynamics of GPCRs in Lipid Membranes: Physical Principles and Experimental Approaches.
Molecules. 2020 Oct 15;25(20):4729. doi: 10.3390/molecules25204729.
10
Lateral heterogeneity and domain formation in cellular membranes.
Chem Phys Lipids. 2020 Oct;232:104976. doi: 10.1016/j.chemphyslip.2020.104976. Epub 2020 Sep 15.

本文引用的文献

1
The aliphatic chain of cholesterol modulates bilayer interleaflet coupling and domain registration.
FEBS Lett. 2016 Oct;590(19):3368-3374. doi: 10.1002/1873-3468.12383. Epub 2016 Sep 22.
2
Remodeling of the postsynaptic plasma membrane during neural development.
Mol Biol Cell. 2016 Nov 7;27(22):3480-3489. doi: 10.1091/mbc.E16-06-0420. Epub 2016 Aug 17.
3
Mixing Temperatures of Bilayers Not Simply Related to Thickness Differences between Lo and Ld Phases.
Biophys J. 2016 Jun 7;110(11):2305-2308. doi: 10.1016/j.bpj.2016.03.042. Epub 2016 May 26.
4
Polyunsaturated Lipids Regulate Membrane Domain Stability by Tuning Membrane Order.
Biophys J. 2016 Apr 26;110(8):1800-1810. doi: 10.1016/j.bpj.2016.03.012.
5
Closing the gap: The approach of optical and computational microscopy to uncover biomembrane organization.
Biochim Biophys Acta. 2016 Oct;1858(10):2558-2568. doi: 10.1016/j.bbamem.2016.03.025. Epub 2016 Mar 31.
6
Current approaches to studying membrane organization.
F1000Res. 2015 Nov 30;4. doi: 10.12688/f1000research.6868.1. eCollection 2015.
7
Reversible Effects of Peptide Concentration and Lipid Composition on H-Ras Lipid Anchor Clustering.
Biophys J. 2015 Dec 15;109(12):2467-2470. doi: 10.1016/j.bpj.2015.11.009.
8
Computational Lipidomics with insane: A Versatile Tool for Generating Custom Membranes for Molecular Simulations.
J Chem Theory Comput. 2015 May 12;11(5):2144-55. doi: 10.1021/acs.jctc.5b00209. Epub 2015 Apr 24.
9
Phase diagram of a polyunsaturated lipid mixture: Brain sphingomyelin/1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine/cholesterol.
Biochim Biophys Acta. 2016 Jan;1858(1):153-61. doi: 10.1016/j.bbamem.2015.10.016. Epub 2015 Oct 23.
10
An automated shotgun lipidomics platform for high throughput, comprehensive, and quantitative analysis of blood plasma intact lipids.
Eur J Lipid Sci Technol. 2015 Oct;117(10):1540-1549. doi: 10.1002/ejlt.201500145. Epub 2015 Jul 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验