Suppr超能文献

酵母基因组中新生端粒添加的内源性热点包含与Cdc13结合的近端增强子。

Endogenous Hot Spots of De Novo Telomere Addition in the Yeast Genome Contain Proximal Enhancers That Bind Cdc13.

作者信息

Obodo Udochukwu C, Epum Esther A, Platts Margaret H, Seloff Jacob, Dahlson Nicole A, Velkovsky Stoycho M, Paul Shira R, Friedman Katherine L

机构信息

Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA.

Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA

出版信息

Mol Cell Biol. 2016 May 31;36(12):1750-63. doi: 10.1128/MCB.00095-16. Print 2016 Jun 15.

Abstract

DNA double-strand breaks (DSBs) pose a threat to genome stability and are repaired through multiple mechanisms. Rarely, telomerase, the enzyme that maintains telomeres, acts upon a DSB in a mutagenic process termed telomere healing. The probability of telomere addition is increased at specific genomic sequences termed sites of repair-associated telomere addition (SiRTAs). By monitoring repair of an induced DSB, we show that SiRTAs on chromosomes V and IX share a bipartite structure in which a core sequence (Core) is directly targeted by telomerase, while a proximal sequence (Stim) enhances the probability of de novo telomere formation. The Stim and Core sequences are sufficient to confer a high frequency of telomere addition to an ectopic site. Cdc13, a single-stranded DNA binding protein that recruits telomerase to endogenous telomeres, is known to stimulate de novo telomere addition when artificially recruited to an induced DSB. Here we show that the ability of the Stim sequence to enhance de novo telomere addition correlates with its ability to bind Cdc13, indicating that natural sites at which telomere addition occurs at high frequency require binding by Cdc13 to a sequence 20 to 100 bp internal from the site at which telomerase acts to initiate de novo telomere addition.

摘要

DNA双链断裂(DSB)对基因组稳定性构成威胁,并通过多种机制进行修复。很少情况下,维持端粒的端粒酶会在一个称为端粒愈合的诱变过程中作用于DSB。在称为修复相关端粒添加位点(SiRTAs)的特定基因组序列处,端粒添加的概率会增加。通过监测诱导产生的DSB的修复过程,我们发现V号和IX号染色体上的SiRTAs具有二分结构,其中核心序列(Core)是端粒酶的直接作用靶点,而近端序列(Stim)则提高了从头形成端粒的概率。Stim和Core序列足以使异位位点的端粒添加频率升高。Cdc13是一种单链DNA结合蛋白,可将端粒酶招募到内源性端粒上,已知当人工招募到诱导产生的DSB时,它会刺激从头端粒添加。在这里,我们表明Stim序列增强从头端粒添加的能力与其结合Cdc13的能力相关,这表明端粒添加高频发生的天然位点需要Cdc13与端粒酶作用启动从头端粒添加位点内部20至100个碱基对处的序列结合。

相似文献

1
Endogenous Hot Spots of De Novo Telomere Addition in the Yeast Genome Contain Proximal Enhancers That Bind Cdc13.
Mol Cell Biol. 2016 May 31;36(12):1750-63. doi: 10.1128/MCB.00095-16. Print 2016 Jun 15.
2
Interaction of yeast Rad51 and Rad52 relieves Rad52-mediated inhibition of de novo telomere addition.
PLoS Genet. 2020 Feb 3;16(2):e1008608. doi: 10.1371/journal.pgen.1008608. eCollection 2020 Feb.
4
A comprehensive map of hotspots of de novo telomere addition in Saccharomyces cerevisiae.
Genetics. 2023 May 26;224(2). doi: 10.1093/genetics/iyad076.
5
Cell cycle-dependent spatial segregation of telomerase from sites of DNA damage.
J Cell Biol. 2017 Aug 7;216(8):2355-2371. doi: 10.1083/jcb.201610071. Epub 2017 Jun 21.
7
Chromosome healing by de novo telomere addition in Saccharomyces cerevisiae.
Mol Microbiol. 2006 Mar;59(5):1357-68. doi: 10.1111/j.1365-2958.2006.05026.x.
8
Cdc13 and telomerase bind through different mechanisms at the lagging- and leading-strand telomeres.
Mol Cell. 2010 Jun 25;38(6):842-52. doi: 10.1016/j.molcel.2010.05.016.
9
Delivery of yeast telomerase to a DNA break depends on the recruitment functions of Cdc13 and Est1.
Mol Cell. 2004 Oct 8;16(1):139-46. doi: 10.1016/j.molcel.2004.09.009.

引用本文的文献

1
The ubiquitin protease Ubp10 suppresses the formation of translocations at Cdc13 binding sites.
bioRxiv. 2025 Jun 28:2025.06.27.661970. doi: 10.1101/2025.06.27.661970.
2
Interstitial telomeric sequences promote gross chromosomal rearrangement via multiple mechanisms.
Proc Natl Acad Sci U S A. 2024 Dec 3;121(49):e2407314121. doi: 10.1073/pnas.2407314121. Epub 2024 Nov 27.
3
Ccq1 restrains Mre11-mediated degradation to distinguish short telomeres from double-strand breaks.
Nucleic Acids Res. 2024 Apr 24;52(7):3722-3739. doi: 10.1093/nar/gkae044.
4
A comprehensive map of hotspots of de novo telomere addition in Saccharomyces cerevisiae.
Genetics. 2023 May 26;224(2). doi: 10.1093/genetics/iyad076.
5
A comprehensive map of hotspots of de novo telomere addition in .
bioRxiv. 2023 Mar 23:2023.03.20.533556. doi: 10.1101/2023.03.20.533556.
8
Telomerase subunit Est2 marks internal sites that are prone to accumulate DNA damage.
BMC Biol. 2021 Nov 20;19(1):247. doi: 10.1186/s12915-021-01167-1.
9
When the Ends Justify the Means: Regulation of Telomere Addition at Double-Strand Breaks in Yeast.
Front Cell Dev Biol. 2021 Mar 18;9:655377. doi: 10.3389/fcell.2021.655377. eCollection 2021.
10
Interstitial telomere sequences disrupt break-induced replication and drive formation of ectopic telomeres.
Nucleic Acids Res. 2020 Dec 16;48(22):12697-12710. doi: 10.1093/nar/gkaa1081.

本文引用的文献

2
Pif1 family helicases suppress genome instability at G-quadruplex motifs.
Nature. 2013 May 23;497(7450):458-62. doi: 10.1038/nature12149. Epub 2013 May 8.
3
Everything you ever wanted to know about Saccharomyces cerevisiae telomeres: beginning to end.
Genetics. 2012 Aug;191(4):1073-105. doi: 10.1534/genetics.111.137851.
4
Anticheckpoint pathways at telomeres in yeast.
Nat Struct Mol Biol. 2012 Feb 12;19(3):307-13. doi: 10.1038/nsmb.2225.
6
Comprehensive genome-wide protein-DNA interactions detected at single-nucleotide resolution.
Cell. 2011 Dec 9;147(6):1408-19. doi: 10.1016/j.cell.2011.11.013.
7
Molecular mechanisms generating and stabilizing terminal 22q13 deletions in 44 subjects with Phelan/McDermid syndrome.
PLoS Genet. 2011 Jul;7(7):e1002173. doi: 10.1371/journal.pgen.1002173. Epub 2011 Jul 14.
8
Cdc13 N-terminal dimerization, DNA binding, and telomere length regulation.
Mol Cell Biol. 2010 Nov;30(22):5325-34. doi: 10.1128/MCB.00515-10. Epub 2010 Sep 13.
9
Survival and growth of yeast without telomere capping by Cdc13 in the absence of Sgs1, Exo1, and Rad9.
PLoS Genet. 2010 Aug 19;6(8):e1001072. doi: 10.1371/journal.pgen.1001072.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验