Suppr超能文献

支链氨基酸的分解代谢缺陷促进心力衰竭。

Catabolic Defect of Branched-Chain Amino Acids Promotes Heart Failure.

作者信息

Sun Haipeng, Olson Kristine C, Gao Chen, Prosdocimo Domenick A, Zhou Meiyi, Wang Zhihua, Jeyaraj Darwin, Youn Ji-Youn, Ren Shuxun, Liu Yunxia, Rau Christoph D, Shah Svati, Ilkayeva Olga, Gui Wen-Jun, William Noelle S, Wynn R Max, Newgard Christopher B, Cai Hua, Xiao Xinshu, Chuang David T, Schulze Paul Christian, Lynch Christopher, Jain Mukesh K, Wang Yibin

机构信息

From Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China (H.S., M.Z., Y.L., Y.W.); Division of Molecular Medicine, Departments of Anesthesiology, Medicine, and Physiology, Molecular Biology Institute, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California, Los Angeles (H.S., C.G., Z.W., J.-Y.Y., S.R., C.D.R., H.C., X.X., Y.W.); Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, PA (K.C.O., C.L.); Case Cardiovascular Research Institute, Harrington Heart and Vascular Institute, Department of Medicine, Case Western Reserve University, Cleveland, OH (D.A.P., D.J., M.K.J.); Division of Cardiology, Department of Medicine (S.S.) and Sarah W. Stedman Nutrition and Metabolism Center, Departments of Medicine and Pharmacology and Cancer Biology (O.I., C.B.N.), and Duke University School of Medicine, Durham, NC; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas (W.-J.G., N.S.W., R.M.W., D.T.C.); and Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY (P.C.S.). Dr Schulze is now at the Department of Internal Medicine, Division of Cardiology, Angiology, Pneumology and Intensive Medical Care, Friedrich-Schiller-University, Jena, Germany.

出版信息

Circulation. 2016 May 24;133(21):2038-49. doi: 10.1161/CIRCULATIONAHA.115.020226. Epub 2016 Apr 8.

Abstract

BACKGROUND

Although metabolic reprogramming is critical in the pathogenesis of heart failure, studies to date have focused principally on fatty acid and glucose metabolism. Contribution of amino acid metabolic regulation in the disease remains understudied.

METHODS AND RESULTS

Transcriptomic and metabolomic analyses were performed in mouse failing heart induced by pressure overload. Suppression of branched-chain amino acid (BCAA) catabolic gene expression along with concomitant tissue accumulation of branched-chain α-keto acids was identified as a significant signature of metabolic reprogramming in mouse failing hearts and validated to be shared in human cardiomyopathy hearts. Molecular and genetic evidence identified the transcription factor Krüppel-like factor 15 as a key upstream regulator of the BCAA catabolic regulation in the heart. Studies using a genetic mouse model revealed that BCAA catabolic defect promoted heart failure associated with induced oxidative stress and metabolic disturbance in response to mechanical overload. Mechanistically, elevated branched-chain α-keto acids directly suppressed respiration and induced superoxide production in isolated mitochondria. Finally, pharmacological enhancement of branched-chain α-keto acid dehydrogenase activity significantly blunted cardiac dysfunction after pressure overload.

CONCLUSIONS

BCAA catabolic defect is a metabolic hallmark of failing heart resulting from Krüppel-like factor 15-mediated transcriptional reprogramming. BCAA catabolic defect imposes a previously unappreciated significant contribution to heart failure.

摘要

背景

尽管代谢重编程在心力衰竭的发病机制中至关重要,但迄今为止的研究主要集中在脂肪酸和葡萄糖代谢上。氨基酸代谢调节在该疾病中的作用仍未得到充分研究。

方法和结果

对压力超负荷诱导的小鼠衰竭心脏进行了转录组学和代谢组学分析。支链氨基酸(BCAA)分解代谢基因表达的抑制以及支链α-酮酸在组织中的累积被确定为小鼠衰竭心脏代谢重编程的一个重要特征,并在人类心肌病心脏中得到验证。分子和遗传学证据确定转录因子Krüppel样因子15是心脏中BCAA分解代谢调节的关键上游调节因子。使用基因小鼠模型的研究表明,BCAA分解代谢缺陷促进了心力衰竭,这与机械超负荷引起的氧化应激和代谢紊乱有关。机制上,升高的支链α-酮酸直接抑制呼吸并在分离的线粒体中诱导超氧化物产生。最后,支链α-酮酸脱氢酶活性的药理学增强显著减轻了压力超负荷后的心脏功能障碍。

结论

BCAA分解代谢缺陷是由Krüppel样因子15介导的转录重编程导致的衰竭心脏的代谢标志。BCAA分解代谢缺陷对心力衰竭有此前未被认识到的重大影响。

相似文献

1
Catabolic Defect of Branched-Chain Amino Acids Promotes Heart Failure.
Circulation. 2016 May 24;133(21):2038-49. doi: 10.1161/CIRCULATIONAHA.115.020226. Epub 2016 Apr 8.
2
Cell-autonomous effect of cardiomyocyte branched-chain amino acid catabolism in heart failure in mice.
Acta Pharmacol Sin. 2023 Jul;44(7):1380-1390. doi: 10.1038/s41401-023-01076-9. Epub 2023 Mar 29.
3
Branched chain amino acid metabolic reprogramming in heart failure.
Biochim Biophys Acta. 2016 Dec;1862(12):2270-2275. doi: 10.1016/j.bbadis.2016.09.009. Epub 2016 Sep 14.
4
Therapeutic Effect of Targeting Branched-Chain Amino Acid Catabolic Flux in Pressure-Overload Induced Heart Failure.
J Am Heart Assoc. 2019 Jun 4;8(11):e011625. doi: 10.1161/JAHA.118.011625. Epub 2019 Jun 1.
5
Defective branched chain amino acid catabolism contributes to cardiac dysfunction and remodeling following myocardial infarction.
Am J Physiol Heart Circ Physiol. 2016 Nov 1;311(5):H1160-H1169. doi: 10.1152/ajpheart.00114.2016. Epub 2016 Aug 19.
7
Diabetes and branched-chain amino acids: What is the link?
J Diabetes. 2018 May;10(5):350-352. doi: 10.1111/1753-0407.12645. Epub 2018 Feb 13.
8
Impaired branched chain amino acid oxidation contributes to cardiac insulin resistance in heart failure.
Cardiovasc Diabetol. 2019 Jul 5;18(1):86. doi: 10.1186/s12933-019-0892-3.
9
Branched-chain amino acid metabolism in heart disease: an epiphenomenon or a real culprit?
Cardiovasc Res. 2011 May 1;90(2):220-3. doi: 10.1093/cvr/cvr070.
10
Branched-Chain Amino Acid Metabolism in the Failing Heart.
Cardiovasc Drugs Ther. 2023 Apr;37(2):413-420. doi: 10.1007/s10557-022-07320-4. Epub 2022 Feb 12.

引用本文的文献

1
Role of branched chain amino acid metabolism on aging.
Biogerontology. 2025 Aug 23;26(5):169. doi: 10.1007/s10522-025-10309-9.
3
Integrated Systems Biology Identifies Disruptions in Mitochondrial Function and Metabolism as Key Contributors to HFpEF.
JACC Basic Transl Sci. 2025 Aug 15;10(9):101334. doi: 10.1016/j.jacbts.2025.101334.
4
Metabolic Regulation of Cardiovascular Aging.
Curr Cardiol Rep. 2025 Aug 15;27(1):128. doi: 10.1007/s11886-025-02279-8.
5
Cardiac substrate metabolism in type 2 diabetes.
Biochem J. 2025 May 21;482(10):499-518. doi: 10.1042/BCJ20240189.
6
Acute kidney injury through a metabolic lens: pathological reprogramming mechanisms and clinical translation potential.
Front Physiol. 2025 Jun 6;16:1602865. doi: 10.3389/fphys.2025.1602865. eCollection 2025.
8
BCAA catabolism targeted therapy for heart failure with preserved ejection fraction.
Theranostics. 2025 May 24;15(13):6257-6273. doi: 10.7150/thno.105894. eCollection 2025.
9
Quantitation of BCAA and BCKA in plasma and patient-centric dried blood microsamples in a clinical setting.
Bioanalysis. 2025 Jun;17(11):707-723. doi: 10.1080/17576180.2025.2515008. Epub 2025 Jun 10.
10
Recent Advances and Perspectives of Metabolomics-Based Investigations in Coronary Heart Disease.
Curr Atheroscler Rep. 2025 Jun 9;27(1):63. doi: 10.1007/s11883-025-01304-z.

本文引用的文献

1
RBFox1-mediated RNA splicing regulates cardiac hypertrophy and heart failure.
J Clin Invest. 2016 Jan;126(1):195-206. doi: 10.1172/JCI84015. Epub 2015 Nov 30.
2
Branched-chain amino acids ameliorate heart failure with cardiac cachexia in rats.
Life Sci. 2015 Sep 15;137:20-7. doi: 10.1016/j.lfs.2015.06.021. Epub 2015 Jul 2.
3
Branched-chain amino acids in metabolic signalling and insulin resistance.
Nat Rev Endocrinol. 2014 Dec;10(12):723-36. doi: 10.1038/nrendo.2014.171. Epub 2014 Oct 7.
5
Energy metabolic reprogramming in the hypertrophied and early stage failing heart: a multisystems approach.
Circ Heart Fail. 2014 Nov;7(6):1022-31. doi: 10.1161/CIRCHEARTFAILURE.114.001469. Epub 2014 Sep 18.
7
Metabolomic analysis of pressure-overloaded and infarcted mouse hearts.
Circ Heart Fail. 2014 Jul;7(4):634-42. doi: 10.1161/CIRCHEARTFAILURE.114.001151. Epub 2014 Apr 24.
8
Kruppel-like factor 15 is a critical regulator of cardiac lipid metabolism.
J Biol Chem. 2014 Feb 28;289(9):5914-24. doi: 10.1074/jbc.M113.531384. Epub 2014 Jan 8.
9
Time course of gene expression during mouse skeletal muscle hypertrophy.
J Appl Physiol (1985). 2013 Oct 1;115(7):1065-74. doi: 10.1152/japplphysiol.00611.2013. Epub 2013 Jul 18.
10
Structure-based design and mechanisms of allosteric inhibitors for mitochondrial branched-chain α-ketoacid dehydrogenase kinase.
Proc Natl Acad Sci U S A. 2013 Jun 11;110(24):9728-33. doi: 10.1073/pnas.1303220110. Epub 2013 May 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验