Suppr超能文献

囊性纤维化跨膜传导调节因子(CFTR)表达、碳酸氢根(HCO3-)分泌与宿主防御之间的关系可能为基于基因和细胞的囊性纤维化治疗提供依据。

Relationships among CFTR expression, HCO3- secretion, and host defense may inform gene- and cell-based cystic fibrosis therapies.

作者信息

Shah Viral S, Ernst Sarah, Tang Xiao Xiao, Karp Philip H, Parker Connor P, Ostedgaard Lynda S, Welsh Michael J

机构信息

Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242; Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242; Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA 52242;

Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242; Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA 52242; Howard Hughes Medical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242.

出版信息

Proc Natl Acad Sci U S A. 2016 May 10;113(19):5382-7. doi: 10.1073/pnas.1604905113. Epub 2016 Apr 25.

Abstract

Cystic fibrosis (CF) is caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel. Airway disease is the major source of morbidity and mortality. Successful implementation of gene- and cell-based therapies for CF airway disease requires knowledge of relationships among percentages of targeted cells, levels of CFTR expression, correction of electrolyte transport, and rescue of host defense defects. Previous studies suggested that, when ∼10-50% of airway epithelial cells expressed CFTR, they generated nearly wild-type levels of Cl(-) secretion; overexpressing CFTR offered no advantage compared with endogenous expression levels. However, recent discoveries focused attention on CFTR-mediated HCO3 (-) secretion and airway surface liquid (ASL) pH as critical for host defense and CF pathogenesis. Therefore, we generated porcine airway epithelia with varying ratios of CF and wild-type cells. Epithelia with a 50:50 mix secreted HCO3 (-) at half the rate of wild-type epithelia. Likewise, heterozygous epithelia (CFTR(+/-) or CFTR(+/∆F508)) expressed CFTR and secreted HCO3 (-) at ∼50% of wild-type values. ASL pH, antimicrobial activity, and viscosity showed similar relationships to the amount of CFTR. Overexpressing CFTR increased HCO3 (-) secretion to rates greater than wild type, but ASL pH did not exceed wild-type values. Thus, in contrast to Cl(-) secretion, the amount of CFTR is rate-limiting for HCO3 (-) secretion and for correcting host defense abnormalities. In addition, overexpressing CFTR might produce a greater benefit than expressing CFTR at wild-type levels when targeting small fractions of cells. These findings may also explain the risk of airway disease in CF carriers.

摘要

囊性纤维化(CF)由编码囊性纤维化跨膜传导调节因子(CFTR)阴离子通道的基因突变引起。气道疾病是发病和死亡的主要原因。成功实施针对CF气道疾病的基因和细胞疗法需要了解靶向细胞百分比、CFTR表达水平、电解质转运纠正以及宿主防御缺陷挽救之间的关系。先前的研究表明,当约10 - 50%的气道上皮细胞表达CFTR时,它们产生的Cl⁻分泌水平接近野生型;与内源性表达水平相比,过度表达CFTR没有优势。然而,最近的发现将注意力集中在CFTR介导的HCO₃⁻分泌和气道表面液体(ASL)pH对宿主防御和CF发病机制的关键作用上。因此,我们构建了具有不同比例CF和野生型细胞的猪气道上皮。50:50混合的上皮分泌HCO₃⁻的速率是野生型上皮的一半。同样,杂合上皮(CFTR(+/-)或CFTR(+/∆F508))表达CFTR并分泌HCO₃⁻的水平约为野生型值的50%。ASL pH、抗菌活性和粘度与CFTR的量呈现相似的关系。过度表达CFTR可使HCO₃⁻分泌速率高于野生型,但ASL pH不会超过野生型值。因此,与Cl⁻分泌不同,CFTR的量是HCO₃⁻分泌以及纠正宿主防御异常的限速因素。此外,当靶向小部分细胞时,过度表达CFTR可能比以野生型水平表达CFTR产生更大的益处。这些发现也可能解释CF携带者发生气道疾病的风险。

相似文献

1
Relationships among CFTR expression, HCO3- secretion, and host defense may inform gene- and cell-based cystic fibrosis therapies.
Proc Natl Acad Sci U S A. 2016 May 10;113(19):5382-7. doi: 10.1073/pnas.1604905113. Epub 2016 Apr 25.
3
Pseudomonas aeruginosa triggers CFTR-mediated airway surface liquid secretion in swine trachea.
Proc Natl Acad Sci U S A. 2014 Sep 2;111(35):12930-5. doi: 10.1073/pnas.1406414111. Epub 2014 Aug 18.
4
Electrolyte transport properties in distal small airways from cystic fibrosis pigs with implications for host defense.
Am J Physiol Lung Cell Mol Physiol. 2016 Apr 1;310(7):L670-9. doi: 10.1152/ajplung.00422.2015. Epub 2016 Jan 22.
5
Bicarbonate conductance and pH regulatory capability of cystic fibrosis transmembrane conductance regulator.
Proc Natl Acad Sci U S A. 1994 Jun 7;91(12):5340-4. doi: 10.1073/pnas.91.12.5340.
6
Innate immune response in CF airway epithelia: hyperinflammatory?
Am J Physiol Cell Physiol. 2006 Aug;291(2):C218-30. doi: 10.1152/ajpcell.00605.2005.
7
Abnormal surface liquid pH regulation by cultured cystic fibrosis bronchial epithelium.
Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):16083-8. doi: 10.1073/pnas.2634339100. Epub 2003 Dec 10.
8
V-Type ATPase Mediates Airway Surface Liquid Acidification in Pig Small Airway Epithelial Cells.
Am J Respir Cell Mol Biol. 2021 Aug;65(2):146-156. doi: 10.1165/rcmb.2020-0349OC.
9
10
Reduced airway surface pH impairs bacterial killing in the porcine cystic fibrosis lung.
Nature. 2012 Jul 4;487(7405):109-13. doi: 10.1038/nature11130.

引用本文的文献

1
The Interface of Gene Editing with Regenerative Medicine.
Engineering (Beijing). 2025 Mar;46:73-100. doi: 10.1016/j.eng.2024.10.019. Epub 2024 Nov 30.
2
Factor 3 regulates airway engraftment by human bronchial basal cells.
Stem Cells Transl Med. 2025 Jan 17;14(1). doi: 10.1093/stcltm/szae084.
3
DNA-PKcs inhibition improves sequential gene insertion of the full-length cDNA in airway stem cells.
Mol Ther Nucleic Acids. 2024 Sep 16;35(4):102339. doi: 10.1016/j.omtn.2024.102339. eCollection 2024 Dec 10.
5
DNA-PKcs Inhibition Improves Sequential Gene Insertion of the Full-Length cDNA in Airway Stem Cells.
bioRxiv. 2024 Aug 12:2024.08.12.607571. doi: 10.1101/2024.08.12.607571.
6
7
CFTR dysfunction leads to defective bacterial eradication on cystic fibrosis airways.
Front Physiol. 2024 Apr 18;15:1385661. doi: 10.3389/fphys.2024.1385661. eCollection 2024.
8
Structural identification of a selectivity filter in CFTR.
Proc Natl Acad Sci U S A. 2024 Feb 27;121(9):e2316673121. doi: 10.1073/pnas.2316673121. Epub 2024 Feb 21.
9
Shuttle peptide delivers base editor RNPs to rhesus monkey airway epithelial cells in vivo.
Nat Commun. 2023 Dec 5;14(1):8051. doi: 10.1038/s41467-023-43904-w.
10
Effect of glucose on growth and co-culture of and in artificial sputum medium.
Heliyon. 2023 Oct 23;9(11):e21469. doi: 10.1016/j.heliyon.2023.e21469. eCollection 2023 Nov.

本文引用的文献

1
Airway acidification initiates host defense abnormalities in cystic fibrosis mice.
Science. 2016 Jan 29;351(6272):503-7. doi: 10.1126/science.aad5589.
2
Acidic pH increases airway surface liquid viscosity in cystic fibrosis.
J Clin Invest. 2016 Mar 1;126(3):879-91. doi: 10.1172/JCI83922. Epub 2016 Jan 25.
4
Ferret and pig models of cystic fibrosis: prospects and promise for gene therapy.
Hum Gene Ther Clin Dev. 2015 Mar;26(1):38-49. doi: 10.1089/humc.2014.154. Epub 2015 Feb 12.
5
Origins of cystic fibrosis lung disease.
N Engl J Med. 2015 Jan 22;372(4):351-62. doi: 10.1056/NEJMra1300109.
6
pH modulates the activity and synergism of the airway surface liquid antimicrobials β-defensin-3 and LL-37.
Proc Natl Acad Sci U S A. 2014 Dec 30;111(52):18703-8. doi: 10.1073/pnas.1422091112. Epub 2014 Dec 15.
7
Cystic fibrosis genetics: from molecular understanding to clinical application.
Nat Rev Genet. 2015 Jan;16(1):45-56. doi: 10.1038/nrg3849. Epub 2014 Nov 18.
8
Impaired mucus detachment disrupts mucociliary transport in a piglet model of cystic fibrosis.
Science. 2014 Aug 15;345(6198):818-22. doi: 10.1126/science.1255825.
9
A functional anatomic defect of the cystic fibrosis airway.
Am J Respir Crit Care Med. 2014 Aug 15;190(4):421-32. doi: 10.1164/rccm.201404-0670OC.
10
The buffer capacity of airway epithelial secretions.
Front Physiol. 2014 Jun 3;5:188. doi: 10.3389/fphys.2014.00188. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验