Suppr超能文献

RNA剪接是基因变异与疾病之间的主要联系。

RNA splicing is a primary link between genetic variation and disease.

作者信息

Li Yang I, van de Geijn Bryce, Raj Anil, Knowles David A, Petti Allegra A, Golan David, Gilad Yoav, Pritchard Jonathan K

机构信息

Department of Genetics, Stanford University, Stanford, CA, USA.

Department of Human Genetics, University of Chicago, Chicago, IL, USA.

出版信息

Science. 2016 Apr 29;352(6285):600-4. doi: 10.1126/science.aad9417. Epub 2016 Apr 28.

Abstract

Noncoding variants play a central role in the genetics of complex traits, but we still lack a full understanding of the molecular pathways through which they act. We quantified the contribution of cis-acting genetic effects at all major stages of gene regulation from chromatin to proteins, in Yoruba lymphoblastoid cell lines (LCLs). About ~65% of expression quantitative trait loci (eQTLs) have primary effects on chromatin, whereas the remaining eQTLs are enriched in transcribed regions. Using a novel method, we also detected 2893 splicing QTLs, most of which have little or no effect on gene-level expression. These splicing QTLs are major contributors to complex traits, roughly on a par with variants that affect gene expression levels. Our study provides a comprehensive view of the mechanisms linking genetic variation to variation in human gene regulation.

摘要

非编码变异在复杂性状的遗传学中起着核心作用,但我们仍未完全了解它们发挥作用的分子途径。我们在约鲁巴淋巴母细胞系(LCLs)中,对从染色质到蛋白质的基因调控所有主要阶段的顺式作用遗传效应的贡献进行了量化。约65%的表达数量性状位点(eQTLs)对染色质有主要影响,而其余的eQTLs在转录区域富集。使用一种新方法,我们还检测到2893个剪接QTLs,其中大多数对基因水平的表达影响很小或没有影响。这些剪接QTLs是复杂性状的主要贡献者,大致与影响基因表达水平的变异相当。我们的研究提供了一个将遗传变异与人类基因调控变异联系起来的机制的全面视图。

相似文献

1
RNA splicing is a primary link between genetic variation and disease.
Science. 2016 Apr 29;352(6285):600-4. doi: 10.1126/science.aad9417. Epub 2016 Apr 28.
2
DNase I sensitivity QTLs are a major determinant of human expression variation.
Nature. 2012 Feb 5;482(7385):390-4. doi: 10.1038/nature10808.
3
Genetic control of RNA splicing and its distinct role in complex trait variation.
Nat Genet. 2022 Sep;54(9):1355-1363. doi: 10.1038/s41588-022-01154-4. Epub 2022 Aug 18.
4
Genetic analyses support the contribution of mRNA N-methyladenosine (mA) modification to human disease heritability.
Nat Genet. 2020 Sep;52(9):939-949. doi: 10.1038/s41588-020-0644-z. Epub 2020 Jun 29.
5
The impact of cell type and context-dependent regulatory variants on human immune traits.
Genome Biol. 2021 Apr 29;22(1):122. doi: 10.1186/s13059-021-02334-x.
6
Sources of gene expression variation in a globally diverse human cohort.
Nature. 2024 Aug;632(8023):122-130. doi: 10.1038/s41586-024-07708-2. Epub 2024 Jul 17.
7
Expression Quantitative Trait Loci Information Improves Predictive Modeling of Disease Relevance of Non-Coding Genetic Variation.
PLoS One. 2015 Oct 16;10(10):e0140758. doi: 10.1371/journal.pone.0140758. eCollection 2015.
8
The genetic and mechanistic basis for variation in gene regulation.
PLoS Genet. 2015 Jan 8;11(1):e1004857. doi: 10.1371/journal.pgen.1004857. eCollection 2015 Jan.
10
Conditional entropy in variation-adjusted windows detects selection signatures associated with expression quantitative trait loci (eQTLs).
BMC Genomics. 2015;16 Suppl 8(Suppl 8):S8. doi: 10.1186/1471-2164-16-S8-S8. Epub 2015 Jun 18.

引用本文的文献

1
Genetic variants of LncRNA associated with splicing regulation and their impact on ovarian cancer development.
Funct Integr Genomics. 2025 Sep 2;25(1):185. doi: 10.1007/s10142-025-01687-x.
3
Regulation of RNA splicing in endometrial tissue and its association with endometriosis.
iScience. 2025 Jul 24;28(9):113207. doi: 10.1016/j.isci.2025.113207. eCollection 2025 Sep 19.
4
Higher eQTL power reveals signals that boost GWAS colocalization.
bioRxiv. 2025 Aug 5:2025.08.05.668745. doi: 10.1101/2025.08.05.668745.
5
Cas13d-mediated isoform-specific RNA knockdown with a unified computational and experimental toolbox.
Nat Commun. 2025 Jul 29;16(1):6948. doi: 10.1038/s41467-025-62066-5.
6
Genetic score omics regression and multitrait meta-analysis detect widespread -regulatory effects shaping bovine complex traits.
PNAS Nexus. 2025 Jul 2;4(7):pgaf208. doi: 10.1093/pnasnexus/pgaf208. eCollection 2025 Jul.

本文引用的文献

1
Partitioning heritability by functional annotation using genome-wide association summary statistics.
Nat Genet. 2015 Nov;47(11):1228-35. doi: 10.1038/ng.3404. Epub 2015 Sep 28.
2
Genetic Control of Chromatin States in Humans Involves Local and Distal Chromosomal Interactions.
Cell. 2015 Aug 27;162(5):1051-65. doi: 10.1016/j.cell.2015.07.048. Epub 2015 Aug 20.
3
Population Variation and Genetic Control of Modular Chromatin Architecture in Humans.
Cell. 2015 Aug 27;162(5):1039-50. doi: 10.1016/j.cell.2015.08.001. Epub 2015 Aug 20.
4
FTO Obesity Variant Circuitry and Adipocyte Browning in Humans.
N Engl J Med. 2015 Sep 3;373(10):895-907. doi: 10.1056/NEJMoa1502214. Epub 2015 Aug 19.
5
Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans.
Science. 2015 May 8;348(6235):648-60. doi: 10.1126/science.1262110. Epub 2015 May 7.
6
Sensitive detection of chromatin-altering polymorphisms reveals autoimmune disease mechanisms.
Nat Methods. 2015 May;12(5):458-64. doi: 10.1038/nmeth.3326. Epub 2015 Mar 23.
7
Integrative analysis of 111 reference human epigenomes.
Nature. 2015 Feb 19;518(7539):317-30. doi: 10.1038/nature14248.
8
Genomic variation. Impact of regulatory variation from RNA to protein.
Science. 2015 Feb 6;347(6222):664-7. doi: 10.1126/science.1260793. Epub 2014 Dec 18.
9
Tissue-specific effects of genetic and epigenetic variation on gene regulation and splicing.
PLoS Genet. 2015 Jan 29;11(1):e1004958. doi: 10.1371/journal.pgen.1004958. eCollection 2015 Jan.
10
RNA splicing. The human splicing code reveals new insights into the genetic determinants of disease.
Science. 2015 Jan 9;347(6218):1254806. doi: 10.1126/science.1254806. Epub 2014 Dec 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验