Suppr超能文献

利用可溶性CRISPR-Cas9核糖核蛋白复合物实现诱变最大化。

Maximizing mutagenesis with solubilized CRISPR-Cas9 ribonucleoprotein complexes.

作者信息

Burger Alexa, Lindsay Helen, Felker Anastasia, Hess Christopher, Anders Carolin, Chiavacci Elena, Zaugg Jonas, Weber Lukas M, Catena Raul, Jinek Martin, Robinson Mark D, Mosimann Christian

机构信息

Institute of Molecular Life Sciences, University of Zürich, Zürich 8057, Switzerland.

Institute of Molecular Life Sciences, University of Zürich, Zürich 8057, Switzerland SIB Swiss Institute of Bioinformatics, University of Zürich, Zürich 8057, Switzerland.

出版信息

Development. 2016 Jun 1;143(11):2025-37. doi: 10.1242/dev.134809. Epub 2016 Apr 29.

Abstract

CRISPR-Cas9 enables efficient sequence-specific mutagenesis for creating somatic or germline mutants of model organisms. Key constraints in vivo remain the expression and delivery of active Cas9-sgRNA ribonucleoprotein complexes (RNPs) with minimal toxicity, variable mutagenesis efficiencies depending on targeting sequence, and high mutation mosaicism. Here, we apply in vitro assembled, fluorescent Cas9-sgRNA RNPs in solubilizing salt solution to achieve maximal mutagenesis efficiency in zebrafish embryos. MiSeq-based sequence analysis of targeted loci in individual embryos using CrispRVariants, a customized software tool for mutagenesis quantification and visualization, reveals efficient bi-allelic mutagenesis that reaches saturation at several tested gene loci. Such virtually complete mutagenesis exposes loss-of-function phenotypes for candidate genes in somatic mutant embryos for subsequent generation of stable germline mutants. We further show that targeting of non-coding elements in gene regulatory regions using saturating mutagenesis uncovers functional control elements in transgenic reporters and endogenous genes in injected embryos. Our results establish that optimally solubilized, in vitro assembled fluorescent Cas9-sgRNA RNPs provide a reproducible reagent for direct and scalable loss-of-function studies and applications beyond zebrafish experiments that require maximal DNA cutting efficiency in vivo.

摘要

CRISPR-Cas9技术能够实现高效的序列特异性诱变,从而创建模式生物的体细胞或生殖系突变体。体内的关键限制因素仍然包括活性Cas9-sgRNA核糖核蛋白复合物(RNP)的表达和递送,同时毒性要最小化;诱变效率因靶向序列而异;以及高突变嵌合现象。在此,我们将体外组装的荧光Cas9-sgRNA RNP应用于可溶解的盐溶液中,以在斑马鱼胚胎中实现最大诱变效率。使用CrispRVariants(一种用于诱变定量和可视化的定制软件工具)对单个胚胎中靶向位点进行基于MiSeq的序列分析,结果显示有效的双等位基因诱变在几个测试基因位点达到饱和。这种几乎完全的诱变揭示了体细胞突变胚胎中候选基因的功能丧失表型,以便随后生成稳定的生殖系突变体。我们进一步表明,使用饱和诱变靶向基因调控区域中的非编码元件,能够揭示注射胚胎中转基因报告基因和内源基因中的功能控制元件。我们的结果表明,最佳溶解的体外组装荧光Cas9-sgRNA RNP为直接和可扩展的功能丧失研究以及斑马鱼实验之外的应用提供了一种可重复的试剂,这些应用需要在体内实现最大的DNA切割效率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验