Suppr超能文献

疼痛传导:药理学视角

Pain transduction: a pharmacologic perspective.

作者信息

McEntire Dan M, Kirkpatrick Daniel R, Dueck Nicholas P, Kerfeld Mitchell J, Smith Tyler A, Nelson Taylor J, Reisbig Mark D, Agrawal Devendra K

机构信息

a Department of Clinical and Translational Science and Department of Anesthesiology , Creighton University School of Medicine , Omaha , NE , USA.

出版信息

Expert Rev Clin Pharmacol. 2016 Aug;9(8):1069-80. doi: 10.1080/17512433.2016.1183481. Epub 2016 May 23.

Abstract

INTRODUCTION

Pain represents a necessary physiological function yet remains a significant pathological process in humans across the world. The transduction of a nociceptive stimulus refers to the processes that turn a noxious stimulus into a transmissible neurological signal. This involves a number of ion channels that facilitate the conversion of nociceptive stimulus into and electrical signal.

AREAS COVERED

An understanding of nociceptive physiology complements a discussion of analgesic pharmacology. Therefore, the two are presented together. In this review article, a critical evaluation is provided on research findings relating to both the physiology and pharmacology of relevant acid-sensing ion channels (ASICs), transient receptor potential (TRP) cation channels, and voltage-gated sodium (Nav) channels. Expert commentary: Despite significant steps toward identifying new and more effective modalities to treat pain, there remain many avenues of inquiry related to pain transduction. The activity of ASICs in nociception has been demonstrated but the physiology is not fully understood. A number of medications appear to interact with ASICs but no research has demonstrated pain-relieving clinical utility. Direct antagonism of TRPV1 channels is not in practice due to concerning side effects. However, work in this area is ongoing. Additional research in the of TRPA1, TRPV3, and TRPM8 may yield useful results. Local anesthetics are widely used. However, the risk for systemic effects limits the maximal safe dosage. Selective Nav antagonists have been identified that lack systemic effects.

摘要

引言

疼痛是一种必要的生理功能,但在全世界人类中仍是一个重要的病理过程。伤害性刺激的转导是指将有害刺激转化为可传递的神经信号的过程。这涉及许多离子通道,这些通道有助于将伤害性刺激转化为电信号。

涵盖领域

对伤害性生理的理解补充了镇痛药理学的讨论。因此,将两者放在一起介绍。在这篇综述文章中,对与相关酸敏感离子通道(ASICs)、瞬时受体电位(TRP)阳离子通道和电压门控钠(Nav)通道的生理学和药理学相关的研究结果进行了批判性评估。

专家评论

尽管在确定治疗疼痛的新的和更有效的方法方面取得了重大进展,但与疼痛转导相关的研究途径仍然很多。ASICs在伤害感受中的活性已得到证实,但其生理学尚未完全了解。一些药物似乎与ASICs相互作用,但没有研究证明其具有缓解疼痛的临床效用。由于存在令人担忧的副作用,在实践中不会直接拮抗TRPV1通道。然而,该领域的研究仍在进行。对TRPA1、TRPV3和TRPM8的进一步研究可能会产生有用的结果。局部麻醉药被广泛使用。然而,全身效应的风险限制了最大安全剂量。已鉴定出缺乏全身效应的选择性Nav拮抗剂。

相似文献

1
Pain transduction: a pharmacologic perspective.
Expert Rev Clin Pharmacol. 2016 Aug;9(8):1069-80. doi: 10.1080/17512433.2016.1183481. Epub 2016 May 23.
2
Transient receptor potential channels on sensory nerves.
Handb Exp Pharmacol. 2009(194):261-81. doi: 10.1007/978-3-540-79090-7_8.
3
TRPs and pain.
Semin Immunopathol. 2016 May;38(3):277-91. doi: 10.1007/s00281-015-0526-0. Epub 2015 Sep 15.
4
Targeting TRP channels for pain relief.
Eur J Pharmacol. 2013 Sep 15;716(1-3):61-76. doi: 10.1016/j.ejphar.2013.03.003. Epub 2013 Mar 14.
5
Morphine inhibits acid-sensing ion channel currents in rat dorsal root ganglion neurons.
Brain Res. 2014 Mar 20;1554:12-20. doi: 10.1016/j.brainres.2014.01.042. Epub 2014 Feb 1.
6
TRP channels and pain.
Curr Pharm Des. 2009;15(15):1736-49. doi: 10.2174/138161209788186308.
7
[Acid-Sensing Ion Channels (ASICs) in pain].
Biol Aujourdhui. 2014;208(1):13-20. doi: 10.1051/jbio/2014001. Epub 2014 Jun 23.
8
Acid sensing ion channels and acid nociception.
Curr Pharm Des. 2009;15(15):1750-66. doi: 10.2174/138161209788186263.

引用本文的文献

3
Injury-Driven Structural and Molecular Modifications in Nociceptors.
Biology (Basel). 2025 Jun 29;14(7):788. doi: 10.3390/biology14070788.
4
Classic Psychedelics in Pain Modulation: Mechanisms, Clinical Evidence, and Future Perspectives.
ACS Chem Neurosci. 2025 Jun 18;16(12):2163-2177. doi: 10.1021/acschemneuro.5c00152. Epub 2025 Jun 6.
5
Psychological Treatment in the Management of Pain following Musculoskeletal Injury.
J Orthop Sports Med. 2025;7(1):162-168. doi: 10.26502/josm.511500191. Epub 2025 Mar 31.
6
Pain pathophysiology and pharmacology of cattle: how improved understanding can enhance pain prevention, mitigation, and welfare.
Front Pain Res (Lausanne). 2024 Aug 27;5:1396992. doi: 10.3389/fpain.2024.1396992. eCollection 2024.
7
The TRPA1 Ion Channel Mediates Oxidative Stress-Related Migraine Pathogenesis.
Molecules. 2024 Jul 18;29(14):3385. doi: 10.3390/molecules29143385.
8
TRPA1, TRPV1, and Caffeine: Pain and Analgesia.
Int J Mol Sci. 2024 Jul 19;25(14):7903. doi: 10.3390/ijms25147903.
9
Tetrahydrocannabinol and Cannabidiol for Pain Treatment-An Update on the Evidence.
Biomedicines. 2024 Jan 29;12(2):307. doi: 10.3390/biomedicines12020307.
10
Pathophysiology of Nociception and Rare Genetic Disorders with Increased Pain Threshold or Pain Insensitivity.
Pathophysiology. 2022 Aug 2;29(3):435-452. doi: 10.3390/pathophysiology29030035.

本文引用的文献

1
Physiological and pharmacologic aspects of peripheral nerve blocks.
J Anaesthesiol Clin Pharmacol. 2015 Jul-Sep;31(3):384-93. doi: 10.4103/0970-9185.161679.
3
TRPV1 channel inhibition contributes to the antinociceptive effects of Croton macrostachyus extract in mice.
BMC Complement Altern Med. 2015 Aug 25;15:293. doi: 10.1186/s12906-015-0816-z.
5
Differential modulation of Nav1.7 and Nav1.8 channels by antidepressant drugs.
Eur J Pharmacol. 2015 Oct 5;764:395-403. doi: 10.1016/j.ejphar.2015.06.053. Epub 2015 Jul 14.
6
Two TRPV1 receptor antagonists are effective in two different experimental models of migraine.
J Headache Pain. 2015;16:57. doi: 10.1186/s10194-015-0539-z. Epub 2015 Jun 24.
9
Inhibition of Nav1.7 channels by methyl eugenol as a mechanism underlying its antinociceptive and anesthetic actions.
Acta Pharmacol Sin. 2015 Jul;36(7):791-9. doi: 10.1038/aps.2015.26. Epub 2015 Jun 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验