From the Department of Pharmacology (H.K., C.Y.N., J.C., S.O., N.W.), Bioinformatics Facility (J.B., M.L.), Nuclear Magnetic Resonance Imaging Facility (A.W.), and Mass Spectrometry Group (A.P., S.H.), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan (M.T.); Department of Pediatrics, Indiana University School of Medicine, Indianapolis (S.J.C.); Department of Cardiology, Kerckhoff Heart and Thorax Center, Bad Nauheim, Germany (H.M., C.T.); and Medical Faculty, J.W. Goethe University Frankfurt, Frankfurt, Germany (S.O., N.W.).
Circ Res. 2016 Jun 10;118(12):1906-17. doi: 10.1161/CIRCRESAHA.116.308643. Epub 2016 May 2.
Activated cardiac fibroblasts (CF) are crucial players in the cardiac damage response; excess fibrosis, however, may result in myocardial stiffening and heart failure development. Inhibition of activated CF has been suggested as a therapeutic strategy in cardiac disease, but whether this truly improves cardiac function is unclear.
To study the effect of CF ablation on cardiac remodeling.
We characterized subgroups of murine CF by single-cell expression analysis and identified periostin as the marker showing the highest correlation to an activated CF phenotype. We generated bacterial artificial chromosome-transgenic mice allowing tamoxifen-inducible Cre expression in periostin-positive cells as well as their diphtheria toxin-mediated ablation. In the healthy heart, periostin expression was restricted to valvular fibroblasts; ablation of this population did not affect cardiac function. After chronic angiotensin II exposure, ablation of activated CF resulted in significantly reduced cardiac fibrosis and improved cardiac function. After myocardial infarction, ablation of periostin-expressing CF resulted in reduced fibrosis without compromising scar stability, and cardiac function was significantly improved. Single-cell transcriptional analysis revealed reduced CF activation but increased expression of prohypertrophic factors in cardiac macrophages and cardiomyocytes, resulting in localized cardiomyocyte hypertrophy.
Modulation of the activated CF population is a promising approach to prevent adverse cardiac remodeling in response to angiotensin II and after myocardial infarction.
活化的心肌成纤维细胞(CF)是心脏损伤反应的关键参与者;然而,过度纤维化可能导致心肌僵硬和心力衰竭的发展。抑制活化的 CF 已被提议作为心脏疾病的一种治疗策略,但这是否真的能改善心脏功能尚不清楚。
研究 CF 消融对心脏重构的影响。
我们通过单细胞表达分析对小鼠 CF 的亚群进行了特征描述,并确定了骨桥蛋白作为与活化 CF 表型相关性最高的标志物。我们构建了细菌人工染色体转基因小鼠,允许在骨桥蛋白阳性细胞中诱导型 Cre 表达,以及它们的白喉毒素介导的消融。在健康心脏中,骨桥蛋白表达局限于瓣膜成纤维细胞;消融这一群细胞不会影响心脏功能。在慢性血管紧张素 II 暴露后,消融活化的 CF 导致心脏纤维化显著减少和心脏功能改善。在心肌梗死后,消融表达骨桥蛋白的 CF 导致纤维化减少,而不损害疤痕稳定性,心脏功能显著改善。单细胞转录组分析显示,心脏巨噬细胞和心肌细胞中 CF 激活减少,但促肥厚因子的表达增加,导致局部心肌细胞肥大。
调节活化的 CF 群体是预防血管紧张素 II 反应和心肌梗死后不良心脏重构的一种有前途的方法。