Suppr超能文献

WeSME:揭示癌症驱动因素的互斥性及其他

WeSME: uncovering mutual exclusivity of cancer drivers and beyond.

作者信息

Kim Yoo-Ah, Madan Sanna, Przytycka Teresa M

机构信息

NCBI, NLM, NIH, Bethesda, MD, 20894, USA.

Poolesville High School, Poolesville, 20837 MD, USA.

出版信息

Bioinformatics. 2017 Mar 15;33(6):814-821. doi: 10.1093/bioinformatics/btw242.

Abstract

MOTIVATION

Mutual exclusivity is a widely recognized property of many cancer drivers. Knowledge about these relationships can provide important insights into cancer drivers, cancer-driving pathways and cancer subtypes. It can also be used to predict new functional interactions between cancer driving genes and uncover novel cancer drivers. Currently, most of mutual exclusivity analyses are preformed focusing on a limited set of genes in part due to the computational cost required to rigorously compute P -values.

RESULTS

To reduce the computing cost and perform less restricted mutual exclusivity analysis, we developed an efficient method to estimate P -values while controlling the mutation rates of individual patients and genes similar to the permutation test. A comprehensive mutual exclusivity analysis allowed us to uncover mutually exclusive pairs, some of which may have relatively low mutation rates. These pairs often included likely cancer drivers that have been missed in previous analyses. More importantly, our results demonstrated that mutual exclusivity can also provide information that goes beyond the interactions between cancer drivers and can, for example, elucidate different mutagenic processes in different cancer groups. In particular, including frequently mutated, long genes such as TTN in our analysis allowed us to observe interesting patterns of APOBEC activity in breast cancer and identify a set of related driver genes that are highly predictive of patient survival. In addition, we utilized our mutual exclusivity analysis in support of a previously proposed model where APOBEC activity is the underlying process that causes TP53 mutations in a subset of breast cancer cases.

AVAILABILITY AND IMPLEMENTATION

http://www.ncbi.nlm.nih.gov/CBBresearch/Przytycka/index.cgi#wesme.

CONTACT

przytyck@ncbi.nlm.nih.gov.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

互斥性是许多癌症驱动因素广泛认可的特性。了解这些关系可为癌症驱动因素、癌症驱动途径和癌症亚型提供重要见解。它还可用于预测癌症驱动基因之间的新功能相互作用并发现新的癌症驱动因素。目前,由于严格计算P值所需的计算成本,大多数互斥性分析都集中在有限的一组基因上。

结果

为了降低计算成本并进行限制较少的互斥性分析,我们开发了一种有效的方法来估计P值,同时控制个体患者和基因的突变率,类似于排列检验。全面的互斥性分析使我们能够发现互斥对,其中一些可能具有相对较低的突变率。这些对通常包括先前分析中遗漏的可能的癌症驱动因素。更重要的是,我们的结果表明,互斥性还可以提供超出癌症驱动因素之间相互作用的信息,例如,可以阐明不同癌症组中的不同诱变过程。特别是,在我们的分析中纳入经常突变的长基因,如TTN,使我们能够观察到乳腺癌中APOBEC活性的有趣模式,并识别出一组高度预测患者生存的相关驱动基因。此外,我们利用互斥性分析来支持先前提出的模型,其中APOBEC活性是导致一部分乳腺癌病例中TP53突变的潜在过程。

可用性和实现方式

http://www.ncbi.nlm.nih.gov/CBBresearch/Przytycka/index.cgi#wesme。

联系方式

przytyck@ncbi.nlm.nih.gov

补充信息

补充数据可在《生物信息学》在线获取。

相似文献

1
WeSME: uncovering mutual exclusivity of cancer drivers and beyond.
Bioinformatics. 2017 Mar 15;33(6):814-821. doi: 10.1093/bioinformatics/btw242.
4
A weighted exact test for mutually exclusive mutations in cancer.
Bioinformatics. 2016 Sep 1;32(17):i736-i745. doi: 10.1093/bioinformatics/btw462.
5
Unraveling the role of low-frequency mutated genes in breast cancer.
Bioinformatics. 2019 Jan 1;35(1):36-46. doi: 10.1093/bioinformatics/bty520.
7
MEScan: a powerful statistical framework for genome-scale mutual exclusivity analysis of cancer mutations.
Bioinformatics. 2021 Jun 9;37(9):1189-1197. doi: 10.1093/bioinformatics/btaa957.
8
A heuristic algorithm solving the mutual-exclusivity-sorting problem.
Bioinformatics. 2023 Jan 1;39(1). doi: 10.1093/bioinformatics/btad016.
9
MEGSA: A Powerful and Flexible Framework for Analyzing Mutual Exclusivity of Tumor Mutations.
Am J Hum Genet. 2016 Mar 3;98(3):442-455. doi: 10.1016/j.ajhg.2015.12.021. Epub 2016 Feb 18.

引用本文的文献

2
Synergistic epistasis among cancer drivers can rescue early tumors from the accumulation of deleterious passengers.
PLoS Comput Biol. 2024 Apr 30;20(4):e1012081. doi: 10.1371/journal.pcbi.1012081. eCollection 2024 Apr.
3
Proteomic analysis of breast cancer based on immune subtypes.
Clin Proteomics. 2024 Feb 29;21(1):17. doi: 10.1186/s12014-024-09463-y.
4
SL-Miner: a web server for mining evidence and prioritization of cancer-specific synthetic lethality.
Bioinformatics. 2024 Feb 1;40(2). doi: 10.1093/bioinformatics/btae016.
5
Adaptation of a mutual exclusivity framework to identify driver mutations within oncogenic pathways.
Am J Hum Genet. 2024 Feb 1;111(2):227-241. doi: 10.1016/j.ajhg.2023.12.009. Epub 2024 Jan 16.
6
Exploration of molecular markers related to chemotherapy efficacy of hepatoid adenocarcinoma of the stomach.
Cell Oncol (Dordr). 2024 Apr;47(2):677-693. doi: 10.1007/s13402-023-00892-9. Epub 2023 Nov 9.
7
Using graph-based model to identify cell specific synthetic lethal effects.
Comput Struct Biotechnol J. 2023 Oct 9;21:5099-5110. doi: 10.1016/j.csbj.2023.10.011. eCollection 2023.
8
Modeling and predicting cancer clonal evolution with reinforcement learning.
Genome Res. 2023 Jul;33(7):1078-1088. doi: 10.1101/gr.277672.123. Epub 2023 Jun 21.
9
Integrative genomic profiling reveals characteristics of lymph node metastasis in small cell lung cancer.
Transl Lung Cancer Res. 2023 Feb 28;12(2):295-311. doi: 10.21037/tlcr-22-785. Epub 2023 Feb 13.

本文引用的文献

1
Understanding Genotype-Phenotype Effects in Cancer via Network Approaches.
PLoS Comput Biol. 2016 Mar 10;12(3):e1004747. doi: 10.1371/journal.pcbi.1004747. eCollection 2016 Mar.
2
APOBEC3B-Mediated Cytidine Deamination Is Required for Estrogen Receptor Action in Breast Cancer.
Cell Rep. 2015 Oct 6;13(1):108-121. doi: 10.1016/j.celrep.2015.08.066. Epub 2015 Sep 24.
3
CoMEt: a statistical approach to identify combinations of mutually exclusive alterations in cancer.
Genome Biol. 2015 Aug 8;16(1):160. doi: 10.1186/s13059-015-0700-7.
6
Molecular mechanism and clinical impact of APOBEC3B-catalyzed mutagenesis in breast cancer.
Breast Cancer Res. 2015 Jan 21;17(1):8. doi: 10.1186/s13058-014-0498-3.
7
The nucleolar ubiquitin-specific protease USP36 deubiquitinates and stabilizes c-Myc.
Proc Natl Acad Sci U S A. 2015 Mar 24;112(12):3734-9. doi: 10.1073/pnas.1411713112. Epub 2015 Mar 9.
8
APOBEC3B expression in breast cancer reflects cellular proliferation, while a deletion polymorphism is associated with immune activation.
Proc Natl Acad Sci U S A. 2015 Mar 3;112(9):2841-6. doi: 10.1073/pnas.1424869112. Epub 2015 Feb 17.
9
Widespread genetic epistasis among cancer genes.
Nat Commun. 2014 Nov 19;5:4828. doi: 10.1038/ncomms5828.
10
APOBEC-mediated cytosine deamination links PIK3CA helical domain mutations to human papillomavirus-driven tumor development.
Cell Rep. 2014 Jun 26;7(6):1833-41. doi: 10.1016/j.celrep.2014.05.012. Epub 2014 Jun 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验