Suppr超能文献

使用基于图的模型来识别细胞特异性合成致死效应。

Using graph-based model to identify cell specific synthetic lethal effects.

作者信息

Pu Mengchen, Cheng Kaiyang, Li Xiaorong, Xin Yucui, Wei Lanying, Jin Sutong, Zheng Weisheng, Peng Gongxin, Tang Qihong, Zhou Jielong, Zhang Yingsheng

机构信息

StoneWise, AI, Ltd., Beijing, China.

Nanjing University of Chinese Medicine, Shanghai, China.

出版信息

Comput Struct Biotechnol J. 2023 Oct 9;21:5099-5110. doi: 10.1016/j.csbj.2023.10.011. eCollection 2023.

Abstract

Synthetic lethal (SL) pairs are pairs of genes whose simultaneous loss-of-function results in cell death, while a damaging mutation of either gene alone does not affect the cell's survival. This makes SL pairs attractive targets for precision cancer therapies, as targeting the unimpaired gene of the SL pair can selectively kill cancer cells that already harbor the impaired gene. Limited by the difficulty of finding true SL pairs, especially on specific cell types, current computational approaches provide only limited insights because of overlooking the crucial aspects of cellular context dependency and mechanistic understanding of SL pairs. As a result, the identification of SL targets still relies on expensive, time-consuming experimental approaches. In this work, we applied cell-line specific multi-omics data to a specially designed deep learning model to predict cell-line specific SL pairs. Through incorporating multiple types of cell-specific omics data with a self-attention module, we represent gene relationships as graphs. Our approach achieves the prediction of SL pairs in a cell-specific manner and demonstrates the potential to facilitate the discovery of cell-specific SL targets for cancer therapeutics, providing a tool to unearth mechanisms underlying the origin of SL in cancer biology. The code and data of our approach can be found at https://github.com/promethiume/SLwise.

摘要

合成致死(SL)基因对是指那些功能同时丧失会导致细胞死亡,但单独一个基因发生有害突变时不会影响细胞存活的基因对。这使得SL基因对成为精准癌症治疗的有吸引力的靶点,因为靶向SL基因对中未受损的基因可以选择性地杀死已经携带受损基因的癌细胞。由于难以找到真正的SL基因对,特别是在特定细胞类型上,当前的计算方法仅提供有限的见解,因为它们忽略了细胞背景依赖性和对SL基因对的机制理解的关键方面。因此,SL靶点的识别仍然依赖于昂贵、耗时的实验方法。在这项工作中,我们将细胞系特异性多组学数据应用于一个专门设计的深度学习模型,以预测细胞系特异性SL基因对。通过将多种类型的细胞特异性组学数据与自注意力模块相结合,我们将基因关系表示为图。我们的方法以细胞特异性方式实现了对SL基因对的预测,并展示了促进发现用于癌症治疗的细胞特异性SL靶点的潜力,为揭示癌症生物学中SL起源的潜在机制提供了一个工具。我们方法的代码和数据可在https://github.com/promethiume/SLwise上找到。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edc7/10618116/f7e0bc52be6b/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验