Suppr超能文献

用于自体干细胞治疗开发的1型强直性肌营养不良症诱导多能干细胞的基因组治疗

Genome Therapy of Myotonic Dystrophy Type 1 iPS Cells for Development of Autologous Stem Cell Therapy.

作者信息

Gao Yuanzheng, Guo Xiuming, Santostefano Katherine, Wang Yanlin, Reid Tammy, Zeng Desmond, Terada Naohiro, Ashizawa Tetsuo, Xia Guangbin

机构信息

Department of Neurology, University of Florida, College of Medicine, Gainesville, Florida, USA.

The Evelyn L & William F. McKnight Brain Institute, University of Florida, Florida, USA.

出版信息

Mol Ther. 2016 Aug;24(8):1378-87. doi: 10.1038/mt.2016.97. Epub 2016 May 12.

Abstract

Myotonic dystrophy type 1 (DM1) is caused by expanded Cytosine-Thymine-Guanine (CTG) repeats in the 3'-untranslated region (3' UTR) of the Dystrophia myotonica protein kinase (DMPK) gene, for which there is no effective therapy. The objective of this study is to develop genome therapy in human DM1 induced pluripotent stem (iPS) cells to eliminate mutant transcripts and reverse the phenotypes for developing autologous stem cell therapy. The general approach involves targeted insertion of polyA signals (PASs) upstream of DMPK CTG repeats, which will lead to premature termination of transcription and elimination of toxic mutant transcripts. Insertion of PASs was mediated by homologous recombination triggered by site-specific transcription activator-like effector nuclease (TALEN)-induced double-strand break. We found genome-treated DM1 iPS cells continue to maintain pluripotency. The insertion of PASs led to elimination of mutant transcripts and complete disappearance of nuclear RNA foci and reversal of aberrant splicing in linear-differentiated neural stem cells, cardiomyocytes, and teratoma tissues. In conclusion, genome therapy by insertion of PASs upstream of the expanded DMPK CTG repeats prevented the production of toxic mutant transcripts and reversal of phenotypes in DM1 iPS cells and their progeny. These genetically-treated iPS cells will have broad clinical application in developing autologous stem cell therapy for DM1.

摘要

1型强直性肌营养不良症(DM1)由肌强直性营养不良蛋白激酶(DMPK)基因3'非翻译区(3'UTR)中胞嘧啶-胸腺嘧啶-鸟嘌呤(CTG)重复序列扩增引起,目前尚无有效治疗方法。本研究的目的是在人DM1诱导多能干细胞(iPS细胞)中开展基因组治疗,以消除突变转录本并逆转表型,从而开发自体干细胞疗法。一般方法是在DMPK CTG重复序列上游靶向插入聚腺苷酸信号(PAS),这将导致转录提前终止并消除有毒的突变转录本。PAS的插入由位点特异性转录激活样效应核酸酶(TALEN)诱导的双链断裂引发的同源重组介导。我们发现经基因组治疗的DM1 iPS细胞继续保持多能性。PAS的插入导致突变转录本的消除以及核RNA病灶完全消失,并使线性分化的神经干细胞、心肌细胞和畸胎瘤组织中的异常剪接逆转。总之,通过在扩增的DMPK CTG重复序列上游插入PAS进行基因组治疗,可防止有毒突变转录本的产生,并逆转DM1 iPS细胞及其后代的表型。这些经过基因治疗的iPS细胞在开发DM1自体干细胞疗法方面将具有广泛的临床应用。

相似文献

1
Genome Therapy of Myotonic Dystrophy Type 1 iPS Cells for Development of Autologous Stem Cell Therapy.
Mol Ther. 2016 Aug;24(8):1378-87. doi: 10.1038/mt.2016.97. Epub 2016 May 12.
3
Therapeutic Genome Editing for Myotonic Dystrophy Type 1 Using CRISPR/Cas9.
Mol Ther. 2018 Nov 7;26(11):2617-2630. doi: 10.1016/j.ymthe.2018.09.003. Epub 2018 Sep 11.
4
Genome Editing of Expanded CTG Repeats within the Human DMPK Gene Reduces Nuclear RNA Foci in the Muscle of DM1 Mice.
Mol Ther. 2019 Aug 7;27(8):1372-1388. doi: 10.1016/j.ymthe.2019.05.021. Epub 2019 Jun 5.
6
Sense and Antisense DMPK RNA Foci Accumulate in DM1 Tissues during Development.
PLoS One. 2015 Sep 4;10(9):e0137620. doi: 10.1371/journal.pone.0137620. eCollection 2015.
7
Short antisense-locked nucleic acids (all-LNAs) correct alternative splicing abnormalities in myotonic dystrophy.
Nucleic Acids Res. 2015 Mar 31;43(6):3318-31. doi: 10.1093/nar/gkv163. Epub 2015 Mar 9.
8
Trinucleotide-repeat expanded and normal DMPK transcripts contain unusually long poly(A) tails despite differential nuclear residence.
Biochim Biophys Acta Gene Regul Mech. 2017 Jun;1860(6):740-749. doi: 10.1016/j.bbagrm.2017.04.002. Epub 2017 Apr 18.

引用本文的文献

1
Myotonic dystrophies: an update on clinical features, molecular mechanisms, management, and gene therapy.
Neurol Sci. 2025 Apr;46(4):1599-1616. doi: 10.1007/s10072-024-07826-9. Epub 2024 Dec 7.
2
Promising AAV.U7snRNAs vectors targeting improve DM1 hallmarks in patient-derived cell lines.
Front Cell Dev Biol. 2023 Jun 15;11:1181040. doi: 10.3389/fcell.2023.1181040. eCollection 2023.
3
Protein Phosphorylation Alterations in Myotonic Dystrophy Type 1: A Systematic Review.
Int J Mol Sci. 2023 Feb 4;24(4):3091. doi: 10.3390/ijms24043091.
7
Molecular Therapies for Myotonic Dystrophy Type 1: From Small Drugs to Gene Editing.
Int J Mol Sci. 2022 Apr 21;23(9):4622. doi: 10.3390/ijms23094622.
8
Brain Pathogenesis and Potential Therapeutic Strategies in Myotonic Dystrophy Type 1.
Front Aging Neurosci. 2021 Nov 15;13:755392. doi: 10.3389/fnagi.2021.755392. eCollection 2021.
9
Neuromuscular Development and Disease: Learning From and Models.
Front Cell Dev Biol. 2021 Oct 27;9:764732. doi: 10.3389/fcell.2021.764732. eCollection 2021.

本文引用的文献

1
Genome editing at the crossroads of delivery, specificity, and fidelity.
Trends Biotechnol. 2015 May;33(5):280-91. doi: 10.1016/j.tibtech.2015.02.011. Epub 2015 Mar 26.
3
Myotonic dystrophy: diagnosis, management and new therapies.
Curr Opin Neurol. 2014 Oct;27(5):599-606. doi: 10.1097/WCO.0000000000000128.
4
Myotonic dystrophy.
Neurol Clin. 2014 Aug;32(3):705-19, viii. doi: 10.1016/j.ncl.2014.04.011. Epub 2014 Jun 6.
5
Synaptic protein dysregulation in myotonic dystrophy type 1: Disease neuropathogenesis beyond missplicing.
Rare Dis. 2013 Jun 26;1:e25553. doi: 10.4161/rdis.25553. eCollection 2013.
6
Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV.
N Engl J Med. 2014 Mar 6;370(10):901-10. doi: 10.1056/NEJMoa1300662.
7
Splicing biomarkers of disease severity in myotonic dystrophy.
Ann Neurol. 2013 Dec;74(6):862-72. doi: 10.1002/ana.23992.
9
Efficient clinical scale gene modification via zinc finger nuclease-targeted disruption of the HIV co-receptor CCR5.
Hum Gene Ther. 2013 Mar;24(3):245-58. doi: 10.1089/hum.2012.172. Epub 2013 Mar 6.
10
Genome-scale engineering for systems and synthetic biology.
Mol Syst Biol. 2013;9:641. doi: 10.1038/msb.2012.66.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验