Suppr超能文献

K(ATP)通道功能获得性突变导致坎图综合征中心肌L型Ca(2+)电流增加和心肌收缩力增强。

K(ATP) channel gain-of-function leads to increased myocardial L-type Ca(2+) current and contractility in Cantu syndrome.

作者信息

Levin Mark D, Singh Gautam K, Zhang Hai Xia, Uchida Keita, Kozel Beth A, Stein Phyllis K, Kovacs Atilla, Westenbroek Ruth E, Catterall William A, Grange Dorothy Katherine, Nichols Colin G

机构信息

Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO 63110; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110;

Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO 63110; Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110;

出版信息

Proc Natl Acad Sci U S A. 2016 Jun 14;113(24):6773-8. doi: 10.1073/pnas.1606465113. Epub 2016 May 31.

Abstract

Cantu syndrome (CS) is caused by gain-of-function (GOF) mutations in genes encoding pore-forming (Kir6.1, KCNJ8) and accessory (SUR2, ABCC9) KATP channel subunits. We show that patients with CS, as well as mice with constitutive (cGOF) or tamoxifen-induced (icGOF) cardiac-specific Kir6.1 GOF subunit expression, have enlarged hearts, with increased ejection fraction and increased contractility. Whole-cell voltage-clamp recordings from cGOF or icGOF ventricular myocytes (VM) show increased basal L-type Ca(2+) current (LTCC), comparable to that seen in WT VM treated with isoproterenol. Mice with vascular-specific expression (vGOF) show left ventricular dilation as well as less-markedly increased LTCC. Increased LTCC in KATP GOF models is paralleled by changes in phosphorylation of the pore-forming α1 subunit of the cardiac voltage-gated calcium channel Cav1.2 at Ser1928, suggesting enhanced protein kinase activity as a potential link between increased KATP current and CS cardiac pathophysiology.

摘要

坎图综合征(CS)由编码钾离子通道(KATP)孔形成亚基(Kir6.1、KCNJ8)和辅助亚基(SUR2、ABCC9)的基因功能获得性(GOF)突变引起。我们发现,CS患者以及组成型(cGOF)或他莫昔芬诱导型(icGOF)心脏特异性Kir6.1 GOF亚基表达的小鼠心脏增大,射血分数增加且收缩性增强。来自cGOF或icGOF心室肌细胞(VM)的全细胞电压钳记录显示,基础L型钙电流(LTCC)增加,与用异丙肾上腺素处理的野生型VM中观察到的情况相当。具有血管特异性表达(vGOF)的小鼠表现出左心室扩张以及LTCC的增加不太明显。KATP GOF模型中LTCC的增加与心脏电压门控钙通道Cav1.2的孔形成α1亚基在Ser1928处磷酸化的变化平行,提示蛋白激酶活性增强是KATP电流增加与CS心脏病理生理学之间的潜在联系。

相似文献

1
K(ATP) channel gain-of-function leads to increased myocardial L-type Ca(2+) current and contractility in Cantu syndrome.
Proc Natl Acad Sci U S A. 2016 Jun 14;113(24):6773-8. doi: 10.1073/pnas.1606465113. Epub 2016 May 31.
2
Cardiovascular consequences of KATP overactivity in Cantu syndrome.
JCI Insight. 2018 Aug 9;3(15). doi: 10.1172/jci.insight.121153.
9
Electrophysiologic consequences of KATP gain of function in the heart: Conduction abnormalities in Cantu syndrome.
Heart Rhythm. 2015 Nov;12(11):2316-24. doi: 10.1016/j.hrthm.2015.06.042. Epub 2015 Jun 30.
10
Complex consequences of Cantu syndrome SUR2 variant R1154Q in genetically modified mice.
JCI Insight. 2021 Mar 8;6(5):145934. doi: 10.1172/jci.insight.145934.

引用本文的文献

2
Lymphatic contractile dysfunction in mouse models of Cantú Syndrome with K channel gain-of-function.
Function (Oxf). 2023 Apr 18;4(3):zqad017. doi: 10.1093/function/zqad017. eCollection 2023.
3
A Unique High-Output Cardiac Hypertrophy Phenotype Arising From Low Systemic Vascular Resistance in Cantu Syndrome.
J Am Heart Assoc. 2022 Dec 20;11(24):e027363. doi: 10.1161/JAHA.122.027363. Epub 2022 Dec 14.
4
Personalized Therapeutics for K-Dependent Pathologies.
Annu Rev Pharmacol Toxicol. 2023 Jan 20;63:541-563. doi: 10.1146/annurev-pharmtox-051921-123023. Epub 2022 Sep 28.
5
Kir6.1 and SUR2B in Cantú syndrome.
Am J Physiol Cell Physiol. 2022 Sep 1;323(3):C920-C935. doi: 10.1152/ajpcell.00154.2022. Epub 2022 Jul 25.
6
K channels in lymphatic function.
Am J Physiol Cell Physiol. 2022 Oct 1;323(4):C1018-C1035. doi: 10.1152/ajpcell.00137.2022. Epub 2022 Jul 4.
8
Case Report: Loss-of-Function Genetic Variant Associated With Ventricular Fibrillation.
Front Genet. 2022 Apr 13;13:718853. doi: 10.3389/fgene.2022.718853. eCollection 2022.
9
The Pharmacology of ATP-Sensitive K Channels (K).
Handb Exp Pharmacol. 2021;267:357-378. doi: 10.1007/164_2021_466.
10
Complex consequences of Cantu syndrome SUR2 variant R1154Q in genetically modified mice.
JCI Insight. 2021 Mar 8;6(5):145934. doi: 10.1172/jci.insight.145934.

本文引用的文献

1
Electrophysiologic consequences of KATP gain of function in the heart: Conduction abnormalities in Cantu syndrome.
Heart Rhythm. 2015 Nov;12(11):2316-24. doi: 10.1016/j.hrthm.2015.06.042. Epub 2015 Jun 30.
2
Basal and β-adrenergic regulation of the cardiac calcium channel CaV1.2 requires phosphorylation of serine 1700.
Proc Natl Acad Sci U S A. 2014 Nov 18;111(46):16598-603. doi: 10.1073/pnas.1419129111. Epub 2014 Nov 3.
3
Pancreatic β cell dedifferentiation in diabetes and redifferentiation following insulin therapy.
Cell Metab. 2014 May 6;19(5):872-82. doi: 10.1016/j.cmet.2014.03.010. Epub 2014 Apr 17.
4
Cantú syndrome resulting from activating mutation in the KCNJ8 gene.
Hum Mutat. 2014 Jul;35(7):809-13. doi: 10.1002/humu.22555. Epub 2014 May 6.
5
L-type CaV1.2 calcium channels: from in vitro findings to in vivo function.
Physiol Rev. 2014 Jan;94(1):303-26. doi: 10.1152/physrev.00016.2013.
6
Phosphorylation sites required for regulation of cardiac calcium channels in the fight-or-flight response.
Proc Natl Acad Sci U S A. 2013 Nov 26;110(48):19621-6. doi: 10.1073/pnas.1319421110. Epub 2013 Nov 11.
8
Hypotension due to Kir6.1 gain-of-function in vascular smooth muscle.
J Am Heart Assoc. 2013 Aug 23;2(4):e000365. doi: 10.1161/JAHA.113.000365.
10
β-adrenergic regulation of the L-type Ca2+ channel does not require phosphorylation of α1C Ser1700.
Circ Res. 2013 Sep 13;113(7):871-80. doi: 10.1161/CIRCRESAHA.113.301926. Epub 2013 Jul 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验