Suppr超能文献

了解甲型流感病毒在宿主体内的动态变化:从理论到临床意义。

Understanding the within-host dynamics of influenza A virus: from theory to clinical implications.

作者信息

Hadjichrysanthou Christoforos, Cauët Emilie, Lawrence Emma, Vegvari Carolin, de Wolf Frank, Anderson Roy M

机构信息

Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK

Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK.

出版信息

J R Soc Interface. 2016 Jun;13(119). doi: 10.1098/rsif.2016.0289.

Abstract

Mathematical models have provided important insights into acute viral dynamics within individual patients. In this paper, we study the simplest target cell-limited models to investigate the within-host dynamics of influenza A virus infection in humans. Despite the biological simplicity of the models, we show how these can be used to understand the severity of the infection and the key attributes of possible immunotherapy and antiviral drugs for the treatment of infection at different times post infection. Through an analytic approach, we derive and estimate simple summary biological quantities that can provide novel insights into the infection dynamics and the definition of clinical endpoints. We focus on nine quantities, including the area under the viral load curve, peak viral load, the time to peak viral load and the level of cell death due to infection. Using Markov chain Monte Carlo methods, we fitted the models to data collected from 12 untreated volunteers who participated in two clinical studies that tested the antiviral drugs oseltamivir and zanamivir. Based on the results, we also discuss various difficulties in deriving precise estimates of the parameters, even in the very simple models considered, when experimental data are limited to viral load measures and/or there is a limited number of viral load measurements post infection.

摘要

数学模型为深入了解个体患者体内的急性病毒动态提供了重要见解。在本文中,我们研究最简单的靶细胞受限模型,以探究甲型流感病毒在人体内的宿主内动态。尽管这些模型在生物学上较为简单,但我们展示了如何利用它们来理解感染的严重程度以及在感染后不同时间用于治疗感染的可能免疫疗法和抗病毒药物的关键特性。通过一种分析方法,我们推导并估计了简单的汇总生物学量,这些量能够为感染动态和临床终点的定义提供新的见解。我们关注九个量,包括病毒载量曲线下面积、病毒载量峰值、达到病毒载量峰值的时间以及因感染导致的细胞死亡水平。使用马尔可夫链蒙特卡罗方法,我们将模型与从12名未接受治疗的志愿者收集的数据进行拟合,这些志愿者参与了两项测试抗病毒药物奥司他韦和扎那米韦的临床研究。基于这些结果,我们还讨论了在推导参数的精确估计值时遇到的各种困难,即使是在考虑的非常简单的模型中,当实验数据仅限于病毒载量测量且/或感染后的病毒载量测量数量有限时。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4da8/4938090/ddf430128550/rsif20160289-g1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验