Roux F, Bergelson J
INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, France; CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan, France.
University of Chicago, Chicago, IL, United States.
Curr Top Dev Biol. 2016;119:111-56. doi: 10.1016/bs.ctdb.2016.03.001. Epub 2016 Apr 23.
In the context of global change, predicting the responses of plant communities in an ever-changing biotic environment calls for a multipronged approach at the interface of evolutionary genetics and community ecology. However, our understanding of the genetic basis of natural variation involved in mediating biotic interactions, and associated adaptive dynamics of focal plants in their natural communities, is still in its infancy. Here, we review the genetic and molecular bases of natural variation in the response to biotic interactions (viruses, bacteria, fungi, oomycetes, herbivores, and plants) in the model plant Arabidopsis thaliana as well as the adaptive value of these bases. Among the 60 identified genes are a number that encode nucleotide-binding site leucine-rich repeat (NBS-LRR)-type proteins, consistent with early examples of plant defense genes. However, recent studies have revealed an extensive diversity in the molecular mechanisms of defense. Many types of genetic variants associate with phenotypic variation in biotic interactions, even among the genes of large effect that tend to be identified. In general, we found that (i) balancing selection rather than directional selection explains the observed patterns of genetic diversity within A. thaliana and (ii) the cost/benefit tradeoffs of adaptive alleles can be strongly dependent on both genomic and environmental contexts. Finally, because A. thaliana rarely interacts with only one biotic partner in nature, we highlight the benefit of exploring diffuse biotic interactions rather than tightly associated host-enemy pairs. This challenge would help to improve our understanding of coevolutionary quantitative genetics within the context of realistic community complexity.
在全球变化的背景下,预测植物群落在不断变化的生物环境中的反应需要在进化遗传学和群落生态学的交叉领域采用多管齐下的方法。然而,我们对于介导生物相互作用所涉及的自然变异的遗传基础,以及焦点植物在其自然群落中的相关适应性动态的理解,仍处于起步阶段。在这里,我们综述了模式植物拟南芥对生物相互作用(病毒、细菌、真菌、卵菌、食草动物和植物)反应的自然变异的遗传和分子基础,以及这些基础的适应性价值。在已鉴定的60个基因中,有一些编码核苷酸结合位点富含亮氨酸重复序列(NBS-LRR)型蛋白,这与植物防御基因的早期例子一致。然而,最近的研究揭示了防御分子机制的广泛多样性。即使在那些倾向于被鉴定出的具有较大效应的基因中,许多类型的遗传变异也与生物相互作用中的表型变异相关。总体而言,我们发现:(i)平衡选择而非定向选择解释了拟南芥中观察到的遗传多样性模式;(ii)适应性等位基因的成本/效益权衡可能强烈依赖于基因组和环境背景。最后,由于拟南芥在自然界中很少只与一个生物伙伴相互作用,我们强调探索扩散性生物相互作用而非紧密关联的宿主-敌人对的益处。这一挑战将有助于在现实群落复杂性的背景下,增进我们对协同进化数量遗传学的理解。