Suppr超能文献

人甾醇14α-去甲基酶作为抗癌化疗靶点:迈向基于结构的药物设计

Human sterol 14α-demethylase as a target for anticancer chemotherapy: towards structure-aided drug design.

作者信息

Hargrove Tatiana Y, Friggeri Laura, Wawrzak Zdzislaw, Sivakumaran Suneethi, Yazlovitskaya Eugenia M, Hiebert Scott W, Guengerich F Peter, Waterman Michael R, Lepesheva Galina I

机构信息

Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232.

Synchrotron Research Center, Life Science Collaborative Access Team, Northwestern University, Argonne, IL.

出版信息

J Lipid Res. 2016 Aug;57(8):1552-63. doi: 10.1194/jlr.M069229. Epub 2016 Jun 16.

Abstract

Rapidly multiplying cancer cells synthesize greater amounts of cholesterol to build their membranes. Cholesterol-lowering drugs (statins) are currently in clinical trials for anticancer chemotherapy. However, given at higher doses, statins cause serious side effects by inhibiting the formation of other biologically important molecules derived from mevalonate. Sterol 14α-demethylase (CYP51), which acts 10 steps downstream, is potentially a more specific drug target because this portion of the pathway is fully committed to cholesterol production. However, screening a variety of commercial and experimental inhibitors of microbial CYP51 orthologs revealed that most of them (including all clinical antifungals) weakly inhibit human CYP51 activity, even if they display high apparent spectral binding affinity. Only one relatively potent compound, (R)-N-(1-(3,4'-difluorobiphenyl-4-yl)-2-(1H-imidazol-1-yl)ethyl)-4-(5-phenyl-1,3,4-oxadiazol-2-yl)benzamide (VFV), was identified. VFV has been further tested in cellular experiments and found to decrease proliferation of different cancer cell types. The crystal structures of human CYP51-VFV complexes (2.0 and 2.5 Å) both display a 2:1 inhibitor/enzyme stoichiometry, provide molecular insights regarding a broader substrate profile, faster catalysis, and weaker susceptibility of human CYP51 to inhibition, and outline directions for the development of more potent inhibitors.

摘要

快速增殖的癌细胞会合成更多的胆固醇来构建细胞膜。降胆固醇药物(他汀类药物)目前正处于抗癌化疗的临床试验阶段。然而,高剂量使用时,他汀类药物会通过抑制由甲羟戊酸衍生的其他生物重要分子的形成而导致严重的副作用。作用于下游10步的甾醇14α-去甲基酶(CYP51)可能是一个更具特异性的药物靶点,因为该途径的这一部分完全致力于胆固醇的产生。然而,对多种微生物CYP51直系同源物的商业和实验抑制剂进行筛选后发现,即使它们表现出高表观光谱结合亲和力,其中大多数(包括所有临床抗真菌药物)对人CYP51活性的抑制作用较弱。仅鉴定出一种相对有效的化合物,即(R)-N-(1-(3,4'-二氟联苯-4-基)-2-(1H-咪唑-1-基)乙基)-4-(5-苯基-1,3,4-恶二唑-2-基)苯甲酰胺(VFV)。VFV已在细胞实验中进一步测试,并发现可降低不同癌细胞类型的增殖。人CYP51-VFV复合物的晶体结构(2.0和2.5 Å)均显示出2:1的抑制剂/酶化学计量比,提供了关于更广泛底物谱、更快催化以及人CYP51对抑制作用较弱敏感性的分子见解,并概述了开发更有效抑制剂的方向。

相似文献

1
Human sterol 14α-demethylase as a target for anticancer chemotherapy: towards structure-aided drug design.
J Lipid Res. 2016 Aug;57(8):1552-63. doi: 10.1194/jlr.M069229. Epub 2016 Jun 16.
5
Structural complex of sterol 14α-demethylase (CYP51) with 14α-methylenecyclopropyl-Delta7-24, 25-dihydrolanosterol.
J Lipid Res. 2012 Feb;53(2):311-20. doi: 10.1194/jlr.M021865. Epub 2011 Nov 30.
6
Sterol 14α-Demethylase Structure-Based Optimization of Drug Candidates for Human Infections with the Protozoan Trypanosomatidae.
J Med Chem. 2018 Dec 13;61(23):10910-10921. doi: 10.1021/acs.jmedchem.8b01671. Epub 2018 Nov 30.
7
Structural and Functional Elucidation of Yeast Lanosterol 14α-Demethylase in Complex with Agrochemical Antifungals.
PLoS One. 2016 Dec 1;11(12):e0167485. doi: 10.1371/journal.pone.0167485. eCollection 2016.
9
Impact of Homologous Resistance Mutations from Pathogenic Yeast on Saccharomyces cerevisiae Lanosterol 14α-Demethylase.
Antimicrob Agents Chemother. 2018 Feb 23;62(3). doi: 10.1128/AAC.02242-17. Print 2018 Mar.
10
Identification of Potent and Selective Inhibitors of : Structural Insights into Sterol 14α-Demethylase as a Key Drug Target.
J Med Chem. 2024 May 9;67(9):7443-7457. doi: 10.1021/acs.jmedchem.4c00303. Epub 2024 Apr 29.

引用本文的文献

1
CYP51A1 in health and disease: from sterol metabolism to regulated cell death.
Cell Death Discov. 2025 Jul 14;11(1):322. doi: 10.1038/s41420-025-02621-7.
2
4
Unique structural features in a deep-sea CYP51 relate to high pressure adaptation.
Res Sq. 2024 Dec 12:rs.3.rs-5589110. doi: 10.21203/rs.3.rs-5589110/v1.
6
Identification of Potent and Selective Inhibitors of : Structural Insights into Sterol 14α-Demethylase as a Key Drug Target.
J Med Chem. 2024 May 9;67(9):7443-7457. doi: 10.1021/acs.jmedchem.4c00303. Epub 2024 Apr 29.
8
9
Targeting Cytochrome P450 Enzymes in Ovarian Cancers: New Approaches to Tumor-Selective Intervention.
Biomedicines. 2023 Oct 26;11(11):2898. doi: 10.3390/biomedicines11112898.
10
Revealing substrate-induced structural changes in active site of human CYP51 in the presence of its physiological substrates.
J Inorg Biochem. 2023 May;242:112167. doi: 10.1016/j.jinorgbio.2023.112167. Epub 2023 Feb 26.

本文引用的文献

1
Ligand tunnels in T. brucei and human CYP51: Insights for parasite-specific drug design.
Biochim Biophys Acta. 2016 Jan;1860(1 Pt A):67-78. doi: 10.1016/j.bbagen.2015.10.015. Epub 2015 Oct 19.
3
VFV as a New Effective CYP51 Structure-Derived Drug Candidate for Chagas Disease and Visceral Leishmaniasis.
J Infect Dis. 2015 Nov 1;212(9):1439-48. doi: 10.1093/infdis/jiv228. Epub 2015 Apr 15.
4
Statins - the Holy Grail for cancer?
Ann Transl Med. 2013 Apr;1(1):1. doi: 10.3978/j.issn.2305-5839.2012.12.02.
5
Muscle- and skeletal-related side-effects of statins: tip of the iceberg?
Eur J Prev Cardiol. 2016 Jan;23(1):88-110. doi: 10.1177/2047487314550804. Epub 2014 Sep 17.
6
Cholesterol lowering: role in cancer prevention and treatment.
Biol Chem. 2015 Jan;396(1):1-11. doi: 10.1515/hsz-2014-0194.
7
Disorders of cholesterol metabolism and their unanticipated convergent mechanisms of disease.
Annu Rev Genomics Hum Genet. 2014;15:173-94. doi: 10.1146/annurev-genom-091212-153412.
9
Immediate utility of two approved agents to target both the metabolic mevalonate pathway and its restorative feedback loop.
Cancer Res. 2014 Sep 1;74(17):4772-82. doi: 10.1158/0008-5472.CAN-14-0130. Epub 2014 Jul 3.
10
Statins in neurological disorders: an overview and update.
Pharmacol Res. 2014 Oct;88:74-83. doi: 10.1016/j.phrs.2014.06.007. Epub 2014 Jun 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验