Suppr超能文献

与唑类药物复合的甾醇14α-脱甲基酶的结构分析揭示了唑类介导的真菌甾醇生物合成抑制的分子基础。

Structural analyses of sterol 14α-demethylase complexed with azole drugs address the molecular basis of azole-mediated inhibition of fungal sterol biosynthesis.

作者信息

Hargrove Tatiana Y, Friggeri Laura, Wawrzak Zdzislaw, Qi Aidong, Hoekstra William J, Schotzinger Robert J, York John D, Guengerich F Peter, Lepesheva Galina I

机构信息

From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232.

the Synchrotron Research Center, Life Science Collaborative Access Team, Northwestern University, Argonne, Illinois 60439.

出版信息

J Biol Chem. 2017 Apr 21;292(16):6728-6743. doi: 10.1074/jbc.M117.778308. Epub 2017 Mar 3.

Abstract

With some advances in modern medicine (such as cancer chemotherapy, broad exposure to antibiotics, and immunosuppression), the incidence of opportunistic fungal pathogens such as has increased. Cases of drug resistance among these pathogens have become more frequent, requiring the development of new drugs and a better understanding of the targeted enzymes. Sterol 14α-demethylase (CYP51) is a cytochrome P450 enzyme required for biosynthesis of sterols in eukaryotic cells and is the major target of clinical drugs for managing fungal pathogens, but some of the CYP51 key features important for rational drug design have remained obscure. We report the catalytic properties, ligand-binding profiles, and inhibition of enzymatic activity of CYP51 by clinical antifungal drugs that are used systemically (fluconazole, voriconazole, ketoconazole, itraconazole, and posaconazole) and topically (miconazole and clotrimazole) and by a tetrazole-based drug candidate, VT-1161 (oteseconazole: ()-2-(2,4-difluorophenyl)-1,1-difluoro-3-(1-tetrazol-1-yl)-1-(5-(4-(2,2,2-trifluoroethoxy)phenyl)pyridin-2-yl)propan-2-ol). Among the compounds tested, the first-line drug fluconazole was the weakest inhibitor, whereas posaconazole and VT-1161 were the strongest CYP51 inhibitors. We determined the X-ray structures of CYP51 complexes with posaconazole and VT-1161, providing a molecular mechanism for the potencies of these drugs, including the activity of VT-1161 against and , pathogens that are intrinsically resistant to fluconazole. Our comparative structural analysis outlines phylum-specific CYP51 features that could direct future rational development of more efficient broad-spectrum antifungals.

摘要

随着现代医学的一些进展(如癌症化疗、广泛使用抗生素和免疫抑制),诸如[具体真菌名称未给出]等机会性真菌病原体的发病率有所上升。这些病原体中的耐药病例变得更加频繁,这就需要开发新药并更好地了解目标酶。甾醇14α-脱甲基酶(CYP51)是真核细胞中甾醇生物合成所需的一种细胞色素P450酶,是治疗真菌病原体临床药物的主要靶点,但对于合理药物设计很重要的一些CYP51关键特征仍不清楚。我们报告了全身使用的临床抗真菌药物(氟康唑、伏立康唑、酮康唑、伊曲康唑和泊沙康唑)和局部使用的药物(咪康唑和克霉唑)以及一种基于四氮唑的候选药物VT-1161(奥替康唑:()-2-(2,4-二氟苯基)-1,1-二氟-3-(1-四氮唑-1-基)-1-(5-(4-(2,2,2-三氟乙氧基)phenyl)吡啶-2-基)丙-2-醇)对CYP51的催化特性、配体结合谱和酶活性抑制情况。在所测试的化合物中,一线药物氟康唑是最弱的抑制剂,而泊沙康唑和VT-1161是最强的CYP51抑制剂。我们确定了CYP51与泊沙康唑和VT-1161复合物的X射线结构,为这些药物的效力提供了分子机制,包括VT-1161对[具体真菌名称未给出]和[具体真菌名称未给出]的活性,这些病原体对氟康唑具有内在抗性。我们的比较结构分析概述了特定门的CYP51特征,这些特征可指导未来更高效广谱抗真菌药物的合理开发。

相似文献

2
The clinical candidate VT-1161 is a highly potent inhibitor of Candida albicans CYP51 but fails to bind the human enzyme.
Antimicrob Agents Chemother. 2014 Dec;58(12):7121-7. doi: 10.1128/AAC.03707-14. Epub 2014 Sep 15.
4
Impact of Homologous Resistance Mutations from Pathogenic Yeast on Saccharomyces cerevisiae Lanosterol 14α-Demethylase.
Antimicrob Agents Chemother. 2018 Feb 23;62(3). doi: 10.1128/AAC.02242-17. Print 2018 Mar.
5
Azole Resistance Reduces Susceptibility to the Tetrazole Antifungal VT-1161.
Antimicrob Agents Chemother. 2018 Dec 21;63(1). doi: 10.1128/AAC.02114-18. Print 2019 Jan.
6
Azole affinity of sterol 14α-demethylase (CYP51) enzymes from Candida albicans and Homo sapiens.
Antimicrob Agents Chemother. 2013 Mar;57(3):1352-60. doi: 10.1128/AAC.02067-12. Epub 2012 Dec 28.

引用本文的文献

1
Antifungal Agents in the 21st Century: Advances, Challenges, and Future Perspectives.
Infect Dis Rep. 2025 Aug 1;17(4):91. doi: 10.3390/idr17040091.
3
Anticandidal activity of essential oil.
Front Pharmacol. 2025 Jul 10;16:1634250. doi: 10.3389/fphar.2025.1634250. eCollection 2025.
4
Exploring Novel Y140F/H Mutant Fungal CYP51 Inhibitors: A Molecular Docking and Dynamics Study on Thiophene Compounds.
J Pharm Bioallied Sci. 2025 Jun;17(Suppl 2):S1888-S1893. doi: 10.4103/jpbs.jpbs_404_25. Epub 2025 Jun 18.
5
Understanding the mechanisms of resistance to azole antifungals in species.
JAC Antimicrob Resist. 2025 Jun 23;7(3):dlaf106. doi: 10.1093/jacamr/dlaf106. eCollection 2025 Jun.
6
9
Azole resistance: patterns of amino acid substitutions in Candida sterol 14α-demethylase.
Antonie Van Leeuwenhoek. 2025 Apr 17;118(5):68. doi: 10.1007/s10482-025-02080-1.

本文引用的文献

2
Candida albicans cell-type switching and functional plasticity in the mammalian host.
Nat Rev Microbiol. 2017 Feb;15(2):96-108. doi: 10.1038/nrmicro.2016.157. Epub 2016 Nov 21.
3
Cell biology of Candida albicans-host interactions.
Curr Opin Microbiol. 2016 Dec;34:111-118. doi: 10.1016/j.mib.2016.08.006. Epub 2016 Sep 28.
4
Role of isavuconazole in the treatment of invasive fungal infections.
Ther Clin Risk Manag. 2016 Aug 3;12:1197-206. doi: 10.2147/TCRM.S90335. eCollection 2016.
6
How can we bolster the antifungal drug discovery pipeline?
Future Med Chem. 2016 Aug;8(12):1393-7. doi: 10.4155/fmc-2016-0124. Epub 2016 Jul 27.
7
Candidemia and invasive candidiasis in adults: A narrative review.
Eur J Intern Med. 2016 Oct;34:21-28. doi: 10.1016/j.ejim.2016.06.029. Epub 2016 Jul 7.
8
Human sterol 14α-demethylase as a target for anticancer chemotherapy: towards structure-aided drug design.
J Lipid Res. 2016 Aug;57(8):1552-63. doi: 10.1194/jlr.M069229. Epub 2016 Jun 16.
9
The development of fluconazole resistance in Candida albicans - an example of microevolution of a fungal pathogen.
J Microbiol. 2016 Mar;54(3):192-201. doi: 10.1007/s12275-016-5628-4. Epub 2016 Feb 27.
10
Clinical Practice Guideline for the Management of Candidiasis: 2016 Update by the Infectious Diseases Society of America.
Clin Infect Dis. 2016 Feb 15;62(4):e1-50. doi: 10.1093/cid/civ933. Epub 2015 Dec 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验