Hargrove Tatiana Y, Friggeri Laura, Wawrzak Zdzislaw, Qi Aidong, Hoekstra William J, Schotzinger Robert J, York John D, Guengerich F Peter, Lepesheva Galina I
From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232.
the Synchrotron Research Center, Life Science Collaborative Access Team, Northwestern University, Argonne, Illinois 60439.
J Biol Chem. 2017 Apr 21;292(16):6728-6743. doi: 10.1074/jbc.M117.778308. Epub 2017 Mar 3.
With some advances in modern medicine (such as cancer chemotherapy, broad exposure to antibiotics, and immunosuppression), the incidence of opportunistic fungal pathogens such as has increased. Cases of drug resistance among these pathogens have become more frequent, requiring the development of new drugs and a better understanding of the targeted enzymes. Sterol 14α-demethylase (CYP51) is a cytochrome P450 enzyme required for biosynthesis of sterols in eukaryotic cells and is the major target of clinical drugs for managing fungal pathogens, but some of the CYP51 key features important for rational drug design have remained obscure. We report the catalytic properties, ligand-binding profiles, and inhibition of enzymatic activity of CYP51 by clinical antifungal drugs that are used systemically (fluconazole, voriconazole, ketoconazole, itraconazole, and posaconazole) and topically (miconazole and clotrimazole) and by a tetrazole-based drug candidate, VT-1161 (oteseconazole: ()-2-(2,4-difluorophenyl)-1,1-difluoro-3-(1-tetrazol-1-yl)-1-(5-(4-(2,2,2-trifluoroethoxy)phenyl)pyridin-2-yl)propan-2-ol). Among the compounds tested, the first-line drug fluconazole was the weakest inhibitor, whereas posaconazole and VT-1161 were the strongest CYP51 inhibitors. We determined the X-ray structures of CYP51 complexes with posaconazole and VT-1161, providing a molecular mechanism for the potencies of these drugs, including the activity of VT-1161 against and , pathogens that are intrinsically resistant to fluconazole. Our comparative structural analysis outlines phylum-specific CYP51 features that could direct future rational development of more efficient broad-spectrum antifungals.
随着现代医学的一些进展(如癌症化疗、广泛使用抗生素和免疫抑制),诸如[具体真菌名称未给出]等机会性真菌病原体的发病率有所上升。这些病原体中的耐药病例变得更加频繁,这就需要开发新药并更好地了解目标酶。甾醇14α-脱甲基酶(CYP51)是真核细胞中甾醇生物合成所需的一种细胞色素P450酶,是治疗真菌病原体临床药物的主要靶点,但对于合理药物设计很重要的一些CYP51关键特征仍不清楚。我们报告了全身使用的临床抗真菌药物(氟康唑、伏立康唑、酮康唑、伊曲康唑和泊沙康唑)和局部使用的药物(咪康唑和克霉唑)以及一种基于四氮唑的候选药物VT-1161(奥替康唑:()-2-(2,4-二氟苯基)-1,1-二氟-3-(1-四氮唑-1-基)-1-(5-(4-(2,2,2-三氟乙氧基)phenyl)吡啶-2-基)丙-2-醇)对CYP51的催化特性、配体结合谱和酶活性抑制情况。在所测试的化合物中,一线药物氟康唑是最弱的抑制剂,而泊沙康唑和VT-1161是最强的CYP51抑制剂。我们确定了CYP51与泊沙康唑和VT-1161复合物的X射线结构,为这些药物的效力提供了分子机制,包括VT-1161对[具体真菌名称未给出]和[具体真菌名称未给出]的活性,这些病原体对氟康唑具有内在抗性。我们的比较结构分析概述了特定门的CYP51特征,这些特征可指导未来更高效广谱抗真菌药物的合理开发。