Suppr超能文献

小鼠中失活X染色体的结构组织

Structural organization of the inactive X chromosome in the mouse.

作者信息

Giorgetti Luca, Lajoie Bryan R, Carter Ava C, Attia Mikael, Zhan Ye, Xu Jin, Chen Chong Jian, Kaplan Noam, Chang Howard Y, Heard Edith, Dekker Job

出版信息

Nature. 2016 Jul 28;535(7613):575-9. doi: 10.1038/nature18589. Epub 2016 Jul 18.

Abstract

X-chromosome inactivation (XCI) involves major reorganization of the X chromosome as it becomes silent and heterochromatic. During female mammalian development, XCI is triggered by upregulation of the non-coding Xist RNA from one of the two X chromosomes. Xist coats the chromosome in cis and induces silencing of almost all genes via its A-repeat region, although some genes (constitutive escapees) avoid silencing in most cell types, and others (facultative escapees) escape XCI only in specific contexts. A role for Xist in organizing the inactive X (Xi) chromosome has been proposed. Recent chromosome conformation capture approaches have revealed global loss of local structure on the Xi chromosome and formation of large mega-domains, separated by a region containing the DXZ4 macrosatellite. However, the molecular architecture of the Xi chromosome, in both the silent and expressed regions,remains unclear. Here we investigate the structure, chromatin accessibility and expression status of the mouse Xi chromosome in highly polymorphic clonal neural progenitors (NPCs) and embryonic stem cells. We demonstrate a crucial role for Xist and the DXZ4-containing boundary in shaping Xi chromosome structure using allele-specific genome-wide chromosome conformation capture (Hi-C) analysis, an assay for transposase-accessible chromatin with high throughput sequencing (ATAC-seq) and RNA sequencing. Deletion of the boundary disrupts mega-domain formation, and induction of Xist RNA initiates formation of the boundary and the loss of DNA accessibility. We also show that in NPCs, the Xi chromosome lacks active/inactive compartments and topologically associating domains (TADs), except around genes that escape XCI. Escapee gene clusters display TAD-like structures and retain DNA accessibility at promoter-proximal and CTCF-binding sites. Furthermore, altered patterns of facultative escape genes indifferent neural progenitor clones are associated with the presence of different TAD-like structures after XCI. These findings suggest a key role for transcription and CTCF in the formation of TADs in the context of the Xi chromosome in neural progenitors.

摘要

X染色体失活(XCI)涉及X染色体在变得沉默和异染色质化时的重大重组。在雌性哺乳动物发育过程中,XCI由两条X染色体之一上的非编码Xist RNA上调触发。Xist以顺式方式覆盖染色体,并通过其A重复区域诱导几乎所有基因沉默,尽管一些基因(组成型逃逸基因)在大多数细胞类型中避免沉默,而其他基因(兼性逃逸基因)仅在特定情况下逃避XCI。有人提出Xist在组织失活X(Xi)染色体中起作用。最近的染色体构象捕获方法揭示了Xi染色体上局部结构的整体丧失以及由包含DXZ4大卫星的区域分隔的大型超级结构域的形成。然而,Xi染色体在沉默和表达区域的分子结构仍不清楚。在这里,我们研究了高度多态性的克隆神经祖细胞(NPC)和胚胎干细胞中小鼠Xi染色体的结构、染色质可及性和表达状态。我们使用等位基因特异性全基因组染色体构象捕获(Hi-C)分析、转座酶可及染色质高通量测序分析(ATAC-seq)和RNA测序,证明了Xist和含DXZ4的边界在塑造Xi染色体结构中的关键作用。边界的缺失破坏了超级结构域的形成,Xist RNA的诱导启动了边界的形成和DNA可及性的丧失。我们还表明,在NPC中,Xi染色体缺乏活跃/不活跃的区室和拓扑相关结构域(TAD),除了逃避XCI的基因周围。逃逸基因簇显示出类似TAD的结构,并在启动子近端和CTCF结合位点保留DNA可及性。此外,不同神经祖细胞克隆中兼性逃逸基因的改变模式与XCI后不同的类似TAD结构的存在有关。这些发现表明转录和CTCF在神经祖细胞Xi染色体背景下TAD形成中起关键作用。

相似文献

1
Structural organization of the inactive X chromosome in the mouse.
Nature. 2016 Jul 28;535(7613):575-9. doi: 10.1038/nature18589. Epub 2016 Jul 18.
2
High-resolution Xist binding maps reveal two-step spreading during X-chromosome inactivation.
Nature. 2013 Dec 19;504(7480):465-469. doi: 10.1038/nature12719. Epub 2013 Oct 27.
3
Jpx RNA activates Xist by evicting CTCF.
Cell. 2013 Jun 20;153(7):1537-51. doi: 10.1016/j.cell.2013.05.028.
4
SPEN integrates transcriptional and epigenetic control of X-inactivation.
Nature. 2020 Feb;578(7795):455-460. doi: 10.1038/s41586-020-1974-9. Epub 2020 Feb 5.
5
YY1 binding is a gene-intrinsic barrier to Xist-mediated gene silencing.
EMBO Rep. 2024 May;25(5):2258-2277. doi: 10.1038/s44319-024-00136-3. Epub 2024 Apr 23.
7
Dynamics of gene silencing during X inactivation using allele-specific RNA-seq.
Genome Biol. 2015 Aug 3;16(1):149. doi: 10.1186/s13059-015-0698-x.
8
SMCHD1 Merges Chromosome Compartments and Assists Formation of Super-Structures on the Inactive X.
Cell. 2018 Jul 12;174(2):406-421.e25. doi: 10.1016/j.cell.2018.05.007. Epub 2018 Jun 7.
9
Spatial partitioning of the regulatory landscape of the X-inactivation centre.
Nature. 2012 Apr 11;485(7398):381-5. doi: 10.1038/nature11049.
10
A TAD boundary is preserved upon deletion of the CTCF-rich Firre locus.
Nat Commun. 2018 Apr 13;9(1):1444. doi: 10.1038/s41467-018-03614-0.

引用本文的文献

3
Xist condensates: perspectives for therapeutic intervention.
Genome Biol. 2025 Jul 21;26(1):215. doi: 10.1186/s13059-025-03666-8.
7
A haplotype-resolved view of human gene regulation.
bioRxiv. 2025 Jun 2:2024.06.14.599122. doi: 10.1101/2024.06.14.599122.
8
Ubinuclein 2 is essential for mouse development and functions in X chromosome inactivation.
PLoS Genet. 2025 Jun 2;21(6):e1011711. doi: 10.1371/journal.pgen.1011711. eCollection 2025 Jun.
9
The Inactive X Chromosome: A Genetic Driver of Female-Biased Rheumatic Autoimmune Disorders?
Eur J Immunol. 2025 May;55(5):e202451331. doi: 10.1002/eji.202451331.
10

本文引用的文献

1
Bipartite structure of the inactive mouse X chromosome.
Genome Biol. 2015 Aug 7;16(1):152. doi: 10.1186/s13059-015-0728-8.
2
Chromosomes. A comprehensive Xist interactome reveals cohesin repulsion and an RNA-directed chromosome conformation.
Science. 2015 Jul 17;349(6245). doi: 10.1126/science.aab2276. Epub 2015 Jun 18.
3
Condensin-driven remodelling of X chromosome topology during dosage compensation.
Nature. 2015 Jul 9;523(7559):240-4. doi: 10.1038/nature14450. Epub 2015 Jun 1.
4
The Xist lncRNA interacts directly with SHARP to silence transcription through HDAC3.
Nature. 2015 May 14;521(7551):232-6. doi: 10.1038/nature14443. Epub 2015 Apr 27.
6
Systematic discovery of Xist RNA binding proteins.
Cell. 2015 Apr 9;161(2):404-16. doi: 10.1016/j.cell.2015.03.025. Epub 2015 Apr 2.
7
Escape from X inactivation varies in mouse tissues.
PLoS Genet. 2015 Mar 18;11(3):e1005079. doi: 10.1371/journal.pgen.1005079. eCollection 2015 Mar.
8
Comparative Hi-C reveals that CTCF underlies evolution of chromosomal domain architecture.
Cell Rep. 2015 Mar 3;10(8):1297-309. doi: 10.1016/j.celrep.2015.02.004. Epub 2015 Feb 26.
9
A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping.
Cell. 2014 Dec 18;159(7):1665-80. doi: 10.1016/j.cell.2014.11.021. Epub 2014 Dec 11.
10
The Hitchhiker's guide to Hi-C analysis: practical guidelines.
Methods. 2015 Jan 15;72:65-75. doi: 10.1016/j.ymeth.2014.10.031. Epub 2014 Nov 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验