Suppr超能文献

芽孢硫醇生物合成途径中首个酶BshA的结构、功能及计算分析

A Structural, Functional, and Computational Analysis of BshA, the First Enzyme in the Bacillithiol Biosynthesis Pathway.

作者信息

Winchell Kelsey R, Egeler Paul W, VanDuinen Andrew J, Jackson Luke B, Karpen Mary E, Cook Paul D

机构信息

Department of Chemistry, Grand Valley State University , Allendale, Michigan 49401, United States.

Department of Cell and Molecular Biology, Grand Valley State University , Allendale, Michigan 49401, United States.

出版信息

Biochemistry. 2016 Aug 23;55(33):4654-65. doi: 10.1021/acs.biochem.6b00472. Epub 2016 Aug 11.

Abstract

Bacillithiol is a compound produced by several Gram-positive bacterial species, including the human pathogens Staphylococcus aureus and Bacillus anthracis. It is involved in maintaining cellular redox balance as well as the destruction of reactive oxygen species and harmful xenobiotic agents, including the antibiotic fosfomycin. BshA, BshB, and BshC are the enzymes involved in bacillithiol biosynthesis. BshA is a retaining glycosyltransferase responsible for the first committed step in bacillithiol production, namely the addition of N-acetylglucosamine to l-malate. Retaining glycosyltransferases like BshA are proposed to utilize an SNi-like reaction mechanism in which leaving group departure and nucleophilic attack occur on the same face of the hexose. However, significant questions regarding the details of how BshA and similar enzymes accommodate their substrates and facilitate catalysis persist. Here we report X-ray crystallographic structures of BshA from Bacillus subtilis 168 bound with UMP and/or GlcNAc-mal at resolutions of 2.15 and 2.02 Å, respectively. These ligand-bound structures, along with our functional and computational studies, provide clearer insight into how BshA and other retaining GT-B glycosyltransferases operate, corroborating the substrate-assisted, SNi-like reaction mechanism. The analyses presented herein can serve as the basis for the design of inhibitors capable of preventing bacillithiol production and, subsequently, help combat resistance to fosfomycin in various pathogenic Gram-positive microorganisms.

摘要

杆菌硫醇是由几种革兰氏阳性细菌产生的一种化合物,包括人类病原体金黄色葡萄球菌和炭疽芽孢杆菌。它参与维持细胞氧化还原平衡以及破坏活性氧和有害的外源性物质,包括抗生素磷霉素。BshA、BshB和BshC是参与杆菌硫醇生物合成的酶。BshA是一种保留型糖基转移酶,负责杆菌硫醇产生的第一步关键反应,即将N-乙酰葡糖胺添加到L-苹果酸上。像BshA这样的保留型糖基转移酶被认为利用一种类似SNi的反应机制,其中离去基团的离去和亲核攻击发生在己糖的同一面上。然而,关于BshA和类似酶如何容纳其底物并促进催化作用的细节仍存在重大问题。在这里,我们报告了来自枯草芽孢杆菌168的BshA与UMP和/或GlcNAc-mal结合的X射线晶体结构,分辨率分别为2.15 Å和2.02 Å。这些配体结合结构,连同我们的功能和计算研究,为BshA和其他保留型GT-B糖基转移酶的作用方式提供了更清晰的见解,证实了底物辅助的类似SNi的反应机制。本文所呈现的分析可以作为设计能够阻止杆菌硫醇产生的抑制剂的基础,并随后有助于对抗各种致病性革兰氏阳性微生物对磷霉素的耐药性。

相似文献

1
A Structural, Functional, and Computational Analysis of BshA, the First Enzyme in the Bacillithiol Biosynthesis Pathway.
Biochemistry. 2016 Aug 23;55(33):4654-65. doi: 10.1021/acs.biochem.6b00472. Epub 2016 Aug 11.
3
X-ray crystallographic structure of BshC, a unique enzyme involved in bacillithiol biosynthesis.
Biochemistry. 2015 Jan 20;54(2):100-3. doi: 10.1021/bi501394q. Epub 2014 Dec 18.
5
X-ray crystallographic structure of BshB, the zinc-dependent deacetylase involved in bacillithiol biosynthesis.
Protein Sci. 2020 Apr;29(4):1035-1039. doi: 10.1002/pro.3808. Epub 2019 Dec 31.
6
Characterization of BshA, bacillithiol glycosyltransferase from Staphylococcus aureus and Bacillus subtilis.
FEBS Lett. 2012 Apr 5;586(7):1004-8. doi: 10.1016/j.febslet.2012.02.028. Epub 2012 Mar 6.
7
Biosynthesis and functions of bacillithiol, a major low-molecular-weight thiol in Bacilli.
Proc Natl Acad Sci U S A. 2010 Apr 6;107(14):6482-6. doi: 10.1073/pnas.1000928107. Epub 2010 Mar 22.
9
Importance of bacillithiol in the oxidative stress response of Staphylococcus aureus.
Infect Immun. 2014 Jan;82(1):316-32. doi: 10.1128/IAI.01074-13. Epub 2013 Oct 28.
10
The Role of Bacillithiol in Gram-Positive Firmicutes.
Antioxid Redox Signal. 2018 Feb 20;28(6):445-462. doi: 10.1089/ars.2017.7057. Epub 2017 Apr 24.

引用本文的文献

2
Activation of Dithiolopyrrolone Antibiotics by Cellular Reductants.
Biochemistry. 2025 Jan 7;64(1):192-202. doi: 10.1021/acs.biochem.4c00533. Epub 2024 Dec 12.
7
Structural basis of the molecular ruler mechanism of a bacterial glycosyltransferase.
Nat Commun. 2018 Jan 31;9(1):445. doi: 10.1038/s41467-018-02880-2.
8
The Role of Bacillithiol in Gram-Positive Firmicutes.
Antioxid Redox Signal. 2018 Feb 20;28(6):445-462. doi: 10.1089/ars.2017.7057. Epub 2017 Apr 24.

本文引用的文献

1
The reaction mechanism of retaining glycosyltransferases.
Biochem Soc Trans. 2016 Feb;44(1):51-60. doi: 10.1042/BST20150177.
2
Improved Treatment of Ligands and Coupling Effects in Empirical Calculation and Rationalization of pKa Values.
J Chem Theory Comput. 2011 Jul 12;7(7):2284-95. doi: 10.1021/ct200133y. Epub 2011 Jun 9.
3
PROPKA3: Consistent Treatment of Internal and Surface Residues in Empirical pKa Predictions.
J Chem Theory Comput. 2011 Feb 8;7(2):525-37. doi: 10.1021/ct100578z. Epub 2011 Jan 6.
4
Speed of conformational change: comparing explicit and implicit solvent molecular dynamics simulations.
Biophys J. 2015 Mar 10;108(5):1153-64. doi: 10.1016/j.bpj.2014.12.047.
5
X-ray crystallographic structure of BshC, a unique enzyme involved in bacillithiol biosynthesis.
Biochemistry. 2015 Jan 20;54(2):100-3. doi: 10.1021/bi501394q. Epub 2014 Dec 18.
6
Advances in understanding glycosyltransferases from a structural perspective.
Curr Opin Struct Biol. 2014 Oct;28:131-41. doi: 10.1016/j.sbi.2014.08.012. Epub 2014 Sep 19.
7
Why can't vertebrates synthesize trehalose?
J Mol Evol. 2014 Oct;79(3-4):111-6. doi: 10.1007/s00239-014-9645-9. Epub 2014 Sep 18.
8
Biophysical features of bacillithiol, the glutathione surrogate of Bacillus subtilis and other firmicutes.
Chembiochem. 2013 Nov 4;14(16):2160-8. doi: 10.1002/cbic.201300404. Epub 2013 Oct 2.
9
Structural and chemical aspects of resistance to the antibiotic fosfomycin conferred by FosB from Bacillus cereus.
Biochemistry. 2013 Oct 15;52(41):7350-62. doi: 10.1021/bi4009648. Epub 2013 Sep 30.
10
Regulation of Bacillus subtilis bacillithiol biosynthesis operons by Spx.
Microbiology (Reading). 2013 Oct;159(Pt 10):2025-2035. doi: 10.1099/mic.0.070482-0. Epub 2013 Jul 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验