Suppr超能文献

质子耦合电子转移的合成应用。

Synthetic Applications of Proton-Coupled Electron Transfer.

机构信息

Department of Chemistry, Princeton University , Princeton, New Jersey 08544, United States.

出版信息

Acc Chem Res. 2016 Aug 16;49(8):1546-56. doi: 10.1021/acs.accounts.6b00272. Epub 2016 Jul 29.

Abstract

Redox events in which an electron and proton are exchanged in a concerted elementary step are commonly referred to as proton-coupled electron transfers (PCETs). PCETs are known to operate in numerous important biological redox processes, as well as recent inorganic technologies for small molecule activation. These studies suggest that PCET catalysis might also function as a general mode of substrate activation in organic synthesis. Over the past three years, our group has worked to advance this hypothesis and to demonstrate the synthetic utility of PCET through the development of novel catalytic radical chemistries. The central aim of these efforts has been to demonstrate the ability of PCET to homolytically activate a wide variety of common organic functional groups that are energetically inaccessible using known molecular H atom transfer catalysts. To do so, we made use of a simple formalism first introduced by Mayer and co-workers that allowed us to predict the thermodynamic capacity of any oxidant/base or reductant/acid pair to formally add or remove H· from a given substrate. With this insight, we were able to rationally select catalyst combinations thermodynamically competent to homolyze the extraordinarily strong E-H σ-bonds found in many common protic functional groups (BDFEs > 100 kcal/mol) or to form unusually weak bonds to hydrogen via the reductive action of common organic π-systems (BDFEs < 35 kcal/mol). These ideas were reduced to practice through the development of new catalyst systems for reductive PCET activations of ketones and oxidative PCET activation of amide N-H bonds to directly furnish reactive ketyl and amidyl radicals, respectively. In both systems, the reaction outcomes were found to be successfully predicted using the effective bond strength formalism, suggesting that these simple thermochemical considerations can provide useful and actionable insights into PCET reaction design. The ability of PCET catalysis to control enantioselectivity in free radical processes has also been established. Specifically, multisite PCET requires the formation of a pre-equilibrium hydrogen bond between the substrate and a proton donor/acceptor prior to charge transfer. We recognized that these H-bond interfaces persist following the PCET event, resulting in the formation of noncovalent complexes of the nascent radical intermediates. When chiral proton donors/acceptors are employed, this association can provide a basis for asymmetric induction in subsequent bond-forming steps. We discuss our efforts to capitalize on this understanding via the development of a catalytic protocol for enantioselective aza-pinacol cyclizations. Lastly, we highlight an alternative PCET mechanism that exploits the ability of redox-active metals to homolytically weaken the bonds in coordinated ligands, enabling nominally strong bonds (BDFEs ∼ 100 kcal) to be abstracted by weak H atom acceptors with concomitant oxidation of the metal center. This "soft homolysis" mechanism enables the generation of metalated intermediates from protic substrates under completely neutral conditions. The first example of this form of catalysis is presented in the context of a catalytic C-N bond forming reaction jointly mediated by bulky titanocene complexes and the stable nitroxyl radical TEMPO.

摘要

在协同的基本步骤中交换电子和质子的氧化还原事件通常被称为质子耦合电子转移(PCET)。众所周知,PCET 存在于许多重要的生物氧化还原过程中,以及最近用于小分子激活的无机技术中。这些研究表明,PCET 催化也可能作为有机合成中底物激活的一般模式。在过去的三年中,我们的团队致力于推进这一假设,并通过开发新型催化自由基化学来证明 PCET 的合成实用性。这些努力的核心目标是证明 PCET 能够均裂激活广泛的常见有机官能团,这些官能团在使用已知的分子 H 原子转移催化剂时能量上无法接近。为此,我们使用了 Mayer 及其同事首次引入的一种简单形式主义,使我们能够预测任何氧化剂/碱或还原剂/酸对从给定底物中形式添加或去除 H·的热力学能力。有了这个见解,我们就能够从理论上合理地选择催化剂组合,使其具有均裂许多常见质子官能团中极强的 E-H σ 键的热力学能力(BDFE > 100 kcal/mol),或者通过常见有机 π 体系的还原作用与氢形成异常弱的键(BDFE < 35 kcal/mol)。通过开发用于酮的还原 PCET 激活和酰胺 N-H 键的氧化 PCET 激活的新型催化剂系统,将这些想法付诸实践,分别直接提供反应性的酮基和酰基自由基。在这两个系统中,使用有效键强度形式主义发现反应结果得到了成功预测,这表明这些简单的热化学考虑可以为 PCET 反应设计提供有用且可行的见解。PCET 催化控制自由基过程中对映选择性的能力也已经得到确立。具体而言,多位点 PCET 需要在电荷转移之前在底物和质子供体/受体之间形成预平衡氢键。我们认识到,这些 H 键界面在 PCET 事件后仍然存在,导致新生成的自由基中间体的非共价复合物的形成。当使用手性质子供体/受体时,这种缔合可以为后续成键步骤中的不对称诱导提供基础。我们讨论了我们通过开发手性氮杂 pinacol 环化的催化协议来利用这种理解的努力。最后,我们强调了一种替代的 PCET 机制,该机制利用氧化还原活性金属均裂削弱配位配体中键的能力,使名义上强的键(BDFE ∼ 100 kcal)能够被弱的 H 原子受体夺取,同时伴随金属中心的氧化。这种“软均裂”机制能够在完全中性条件下从质子供体中生成金属化中间体。这种形式的催化的第一个例子是在由大体积茂钛配合物和稳定的氮氧自由基 TEMPO 共同介导的催化 C-N 键形成反应的背景下提出的。

相似文献

1
Synthetic Applications of Proton-Coupled Electron Transfer.
Acc Chem Res. 2016 Aug 16;49(8):1546-56. doi: 10.1021/acs.accounts.6b00272. Epub 2016 Jul 29.
2
Catalytic alkylation of remote C-H bonds enabled by proton-coupled electron transfer.
Nature. 2016 Nov 10;539(7628):268-271. doi: 10.1038/nature19811. Epub 2016 Oct 12.
3
Catalytic ketyl-olefin cyclizations enabled by proton-coupled electron transfer.
J Am Chem Soc. 2013 Jul 10;135(27):10022-5. doi: 10.1021/ja404342j. Epub 2013 Jun 28.
4
Photochemical and Electrochemical Applications of Proton-Coupled Electron Transfer in Organic Synthesis.
Chem Rev. 2022 Jan 26;122(2):2017-2291. doi: 10.1021/acs.chemrev.1c00374. Epub 2021 Nov 23.
5
A Continuum of Proton-Coupled Electron Transfer Reactivity.
Acc Chem Res. 2018 Oct 16;51(10):2391-2399. doi: 10.1021/acs.accounts.8b00319. Epub 2018 Sep 20.
6
Catalytic Alkene Carboaminations Enabled by Oxidative Proton-Coupled Electron Transfer.
J Am Chem Soc. 2015 Jul 29;137(29):9226-9. doi: 10.1021/jacs.5b05377. Epub 2015 Jul 15.
8
Proton-Coupled Electron Transfer in Organic Synthesis: Fundamentals, Applications, and Opportunities.
Top Curr Chem (Cham). 2016 Jun;374(3):30. doi: 10.1007/s41061-016-0030-6. Epub 2016 May 9.
9
Hydrogen Atom Transfer Reactions of Mononuclear Nonheme Metal-Oxygen Intermediates.
Acc Chem Res. 2018 Sep 18;51(9):2014-2022. doi: 10.1021/acs.accounts.8b00299. Epub 2018 Sep 4.
10
Breaking bonds with electrons and protons. Models and examples.
Acc Chem Res. 2014 Jan 21;47(1):271-80. doi: 10.1021/ar4001444. Epub 2013 Sep 9.

引用本文的文献

1
Room-Temperature Direct Homolysis of C─H Bond via Catalyst-Free Photoexcitation.
Exploration (Beijing). 2025 Apr 10;5(4):e20240237. doi: 10.1002/EXP.20240237. eCollection 2025 Aug.
2
Photoredox catalytic asymmetric dearomative [3 + 2] cycloaddition of isoquinolines with enones.
Nat Commun. 2025 Aug 13;16(1):7520. doi: 10.1038/s41467-025-62876-7.
3
Mechanistic Studies of the Proton-Coupled Electron Transfer Reactivity of a Cobalt Complex with a Proton-Responsive PNP Pincer-Type Ligand.
Inorg Chem. 2025 Jul 21;64(28):14466-14474. doi: 10.1021/acs.inorgchem.5c01792. Epub 2025 Jul 10.
4
Iridium Polypyridyl Carboxylates as Excited-State PCET Catalysts for the Functionalization of Unactivated C-H Bonds.
J Am Chem Soc. 2025 Jun 18;147(24):20703-20715. doi: 10.1021/jacs.5c04000. Epub 2025 Jun 10.
5
Electrochemical Conversions of Sulfenamides into Sulfonimidoyl- and Sulfondiimidoyl Fluorides.
JACS Au. 2025 Apr 29;5(5):2359-2367. doi: 10.1021/jacsau.5c00374. eCollection 2025 May 26.
6
Photoredox-Catalyzed Hydroalkylation of C(sp)-H Acids.
Chemistry. 2025 May 22;31(29):e202501148. doi: 10.1002/chem.202501148. Epub 2025 Apr 21.
7
Explaining Kinetic Isotope Effects in Proton-Coupled Electron Transfer Reactions.
Acc Chem Res. 2025 Apr 15;58(8):1335-1344. doi: 10.1021/acs.accounts.5c00119. Epub 2025 Apr 4.
9
Intermolecular Anti-Markovnikov Hydroamination of Alkenes with Sulfonamides, Sulfamides, and Sulfamates.
ACS Catal. 2024 Sep 6;14(17):13098-13104. doi: 10.1021/acscatal.4c03960. Epub 2024 Aug 16.
10
Functionalized Terthiophene as an Ambipolar Redox System: Structure, Spectroscopy, and Switchable Proton-Coupled Electron Transfer.
J Am Chem Soc. 2025 Feb 5;147(5):4493-4503. doi: 10.1021/jacs.4c16003. Epub 2025 Jan 27.

本文引用的文献

1
Proton coupled electron transfer from the excited state of a ruthenium(II) pyridylimidazole complex.
Phys Chem Chem Phys. 2016 Apr 28;18(16):11374-82. doi: 10.1039/c6cp00437g.
2
Catalytic Olefin Hydroamidation Enabled by Proton-Coupled Electron Transfer.
J Am Chem Soc. 2015 Oct 28;137(42):13492-5. doi: 10.1021/jacs.5b09671. Epub 2015 Oct 16.
3
Proton-Coupled Electron Transfer in the Reduction of Arenes by SmI2-Water Complexes.
J Am Chem Soc. 2015 Sep 9;137(35):11526-31. doi: 10.1021/jacs.5b07518. Epub 2015 Aug 26.
4
Catalytic Alkene Carboaminations Enabled by Oxidative Proton-Coupled Electron Transfer.
J Am Chem Soc. 2015 Jul 29;137(29):9226-9. doi: 10.1021/jacs.5b05377. Epub 2015 Jul 15.
5
Frustrated Lewis pair chemistry: development and perspectives.
Angew Chem Int Ed Engl. 2015 May 26;54(22):6400-41. doi: 10.1002/anie.201409800. Epub 2015 May 14.
6
Bond-weakening catalysis: conjugate aminations enabled by the soft homolysis of strong N-H bonds.
J Am Chem Soc. 2015 May 27;137(20):6440-3. doi: 10.1021/jacs.5b03428. Epub 2015 May 13.
7
Ammonia synthesis by hydrogenolysis of titanium-nitrogen bonds using proton coupled electron transfer.
J Am Chem Soc. 2015 Mar 18;137(10):3498-501. doi: 10.1021/jacs.5b01047. Epub 2015 Mar 4.
8
The reaction of cobaloximes with hydrogen: products and thermodynamics.
J Am Chem Soc. 2014 Dec 17;136(50):17362-5. doi: 10.1021/ja508200g. Epub 2014 Dec 9.
9
Site-selective aliphatic C-H bromination using N-bromoamides and visible light.
J Am Chem Soc. 2014 Oct 15;136(41):14389-92. doi: 10.1021/ja508469u. Epub 2014 Oct 3.
10
Simple, chemoselective hydrogenation with thermodynamic stereocontrol.
J Am Chem Soc. 2014 Jan 29;136(4):1300-3. doi: 10.1021/ja412342g. Epub 2014 Jan 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验