Suppr超能文献

通过末端测序全基因组测量DNA断裂与末端切除

DNA Breaks and End Resection Measured Genome-wide by End Sequencing.

作者信息

Canela Andres, Sridharan Sriram, Sciascia Nicholas, Tubbs Anthony, Meltzer Paul, Sleckman Barry P, Nussenzweig André

机构信息

Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD 20892, USA.

Genetics Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA.

出版信息

Mol Cell. 2016 Sep 1;63(5):898-911. doi: 10.1016/j.molcel.2016.06.034. Epub 2016 Jul 28.

Abstract

DNA double-strand breaks (DSBs) arise during physiological transcription, DNA replication, and antigen receptor diversification. Mistargeting or misprocessing of DSBs can result in pathological structural variation and mutation. Here we describe a sensitive method (END-seq) to monitor DNA end resection and DSBs genome-wide at base-pair resolution in vivo. We utilized END-seq to determine the frequency and spectrum of restriction-enzyme-, zinc-finger-nuclease-, and RAG-induced DSBs. Beyond sequence preference, chromatin features dictate the repertoire of these genome-modifying enzymes. END-seq can detect at least one DSB per cell among 10,000 cells not harboring DSBs, and we estimate that up to one out of 60 cells contains off-target RAG cleavage. In addition to site-specific cleavage, we detect DSBs distributed over extended regions during immunoglobulin class-switch recombination. Thus, END-seq provides a snapshot of DNA ends genome-wide, which can be utilized for understanding genome-editing specificities and the influence of chromatin on DSB pathway choice.

摘要

DNA双链断裂(DSB)在生理转录、DNA复制和抗原受体多样化过程中产生。DSB的靶向错误或处理不当会导致病理性结构变异和突变。在此,我们描述了一种灵敏的方法(END-seq),用于在体内以碱基对分辨率全基因组监测DNA末端切除和DSB。我们利用END-seq确定限制性内切酶、锌指核酸酶和RAG诱导的DSB的频率和谱。除了序列偏好外,染色质特征还决定了这些基因组修饰酶的作用范围。END-seq能够在10000个未携带DSB的细胞中检测到每个细胞至少一个DSB,并且我们估计每60个细胞中就有一个含有脱靶RAG切割。除了位点特异性切割外,我们在免疫球蛋白类别转换重组过程中检测到分布在扩展区域的DSB。因此,END-seq提供了全基因组DNA末端的快照,可用于理解基因组编辑特异性以及染色质对DSB途径选择的影响。

相似文献

1
DNA Breaks and End Resection Measured Genome-wide by End Sequencing.
Mol Cell. 2016 Sep 1;63(5):898-911. doi: 10.1016/j.molcel.2016.06.034. Epub 2016 Jul 28.
2
Endonuclease G plays a role in immunoglobulin class switch DNA recombination by introducing double-strand breaks in switch regions.
Mol Immunol. 2011 Jan;48(4):610-22. doi: 10.1016/j.molimm.2010.10.023. Epub 2010 Nov 26.
3
Histone H2AX stabilizes broken DNA strands to suppress chromosome breaks and translocations during V(D)J recombination.
J Exp Med. 2009 Nov 23;206(12):2625-39. doi: 10.1084/jem.20091320. Epub 2009 Nov 2.
5
Orientation-specific joining of AID-initiated DNA breaks promotes antibody class switching.
Nature. 2015 Sep 3;525(7567):134-139. doi: 10.1038/nature14970. Epub 2015 Aug 26.
6
H2AX prevents CtIP-mediated DNA end resection and aberrant repair in G1-phase lymphocytes.
Nature. 2011 Jan 13;469(7329):245-9. doi: 10.1038/nature09585. Epub 2010 Dec 15.
7
RAG-mediated DNA double-strand breaks activate a cell type-specific checkpoint to inhibit pre-B cell receptor signals.
J Exp Med. 2016 Feb 8;213(2):209-23. doi: 10.1084/jem.20151048. Epub 2016 Feb 1.
8
IgH class switching exploits a general property of two DNA breaks to be joined in cis over long chromosomal distances.
Proc Natl Acad Sci U S A. 2014 Feb 18;111(7):2644-9. doi: 10.1073/pnas.1324176111. Epub 2014 Feb 3.
10
DSB structure impacts DNA recombination leading to class switching and chromosomal translocations in human B cells.
PLoS Genet. 2019 Apr 4;15(4):e1008101. doi: 10.1371/journal.pgen.1008101. eCollection 2019 Apr.

引用本文的文献

1
Fast and accurate quantification of double-strand breaks in microsatellites by digital PCR.
Biol Methods Protoc. 2025 Aug 9;10(1):bpaf059. doi: 10.1093/biomethods/bpaf059. eCollection 2025.
2
PALB2 and 53BP1 govern post-resection homologous recombination DNA repair.
Mol Cell. 2025 Jul 31. doi: 10.1016/j.molcel.2025.07.003.
4
Mechanism of cytarabine-induced neurotoxicity.
Nature. 2025 Jun 25. doi: 10.1038/s41586-025-09210-9.
5
Building a neural network model to define DNA sequence specificity in V(D)J recombination.
Nucleic Acids Res. 2025 Jun 20;53(12). doi: 10.1093/nar/gkaf551.
6
Conserved and Unique Features of Terminal Telomeric Sequences in ALT-Positive Cancer Cells.
bioRxiv. 2025 Jun 2:2025.02.27.640565. doi: 10.1101/2025.02.27.640565.
8
Mouse MRE11-RAD50-NBS1 is needed to start and extend meiotic DNA end resection.
Nat Commun. 2025 Apr 16;16(1):3613. doi: 10.1038/s41467-025-57928-x.
9
Mechanisms and regulation of DNA end resection in the maintenance of genome stability.
Nat Rev Mol Cell Biol. 2025 Mar 25. doi: 10.1038/s41580-025-00841-4.
10
Structural basis of gap-filling DNA synthesis in the nucleosome by DNA Polymerase β.
Nat Commun. 2025 Mar 17;16(1):2607. doi: 10.1038/s41467-025-57915-2.

本文引用的文献

1
Defining and improving the genome-wide specificities of CRISPR-Cas9 nucleases.
Nat Rev Genet. 2016 May;17(5):300-12. doi: 10.1038/nrg.2016.28.
2
RNA Polymerase II Regulates Topoisomerase 1 Activity to Favor Efficient Transcription.
Cell. 2016 Apr 7;165(2):357-71. doi: 10.1016/j.cell.2016.02.036.
4
Nucleosomes impede Cas9 access to DNA in vivo and in vitro.
Elife. 2016 Mar 17;5:e12677. doi: 10.7554/eLife.12677.
5
Restoration of ATM Expression in DNA-PKcs-Deficient Cells Inhibits Signal End Joining.
J Immunol. 2016 Apr 1;196(7):3032-42. doi: 10.4049/jimmunol.1501654. Epub 2016 Feb 26.
6
Transcriptional elongation requires DNA break-induced signalling.
Nat Commun. 2015 Dec 16;6:10191. doi: 10.1038/ncomms10191.
7
Chromosomal Loop Domains Direct the Recombination of Antigen Receptor Genes.
Cell. 2015 Nov 5;163(4):947-59. doi: 10.1016/j.cell.2015.10.016. Epub 2015 Oct 22.
8
Chromatin Dynamics and the Development of the TCRα and TCRδ Repertoires.
Adv Immunol. 2015;128:307-61. doi: 10.1016/bs.ai.2015.07.005. Epub 2015 Aug 15.
9
Regulation and Evolution of the RAG Recombinase.
Adv Immunol. 2015;128:1-39. doi: 10.1016/bs.ai.2015.07.002. Epub 2015 Aug 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验