Suppr超能文献

鞘脂类作为真菌感染治疗的靶点。

Sphingolipids as targets for treatment of fungal infections.

作者信息

Rollin-Pinheiro Rodrigo, Singh Ashutosh, Barreto-Bergter Eliana, Del Poeta Maurizio

机构信息

Departamento de Microbiologia Geral, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, UFRJ, 21941-902 Rio de Janeiro, Brazil.

Department of Molecular Genetics & Microbiology, Stony Brook University, 145 Life Sciences Building, Stony Brook, 11794 NY, USA.

出版信息

Future Med Chem. 2016 Aug;8(12):1469-84. doi: 10.4155/fmc-2016-0053. Epub 2016 Aug 9.

Abstract

Invasive fungal infections have significantly increased in the last few decades. Three classes of drugs are commonly used to treat these infections: polyenes, azoles and echinocandins. Unfortunately each of these drugs has drawbacks; polyenes are toxic, resistance against azoles is emerging and echinocandins have narrow spectrum of activity. Thus, the development of new antifungals is urgently needed. In this context, fungal sphingolipids have emerged as a potential target for new antifungals, because their biosynthesis in fungi is structurally different than in mammals. Besides, some fungal sphingolipids play an important role in the regulation of virulence in a variety of fungi. This review aims to highlight the diverse strategies that could be used to block the synthesis or/and function of fungal sphingolipids.

摘要

在过去几十年中,侵袭性真菌感染显著增加。通常使用三类药物来治疗这些感染:多烯类、唑类和棘白菌素类。不幸的是,这些药物都有缺点;多烯类有毒,对唑类的耐药性正在出现,而棘白菌素类的活性谱较窄。因此,迫切需要开发新的抗真菌药物。在这种背景下,真菌鞘脂已成为新抗真菌药物的潜在靶点,因为它们在真菌中的生物合成在结构上与哺乳动物不同。此外,一些真菌鞘脂在多种真菌的毒力调节中起重要作用。本综述旨在强调可用于阻断真菌鞘脂合成或/和功能的多种策略。

相似文献

1
Sphingolipids as targets for treatment of fungal infections.
Future Med Chem. 2016 Aug;8(12):1469-84. doi: 10.4155/fmc-2016-0053. Epub 2016 Aug 9.
2
Fungal sphingolipids: role in the regulation of virulence and potential as targets for future antifungal therapies.
Expert Rev Anti Infect Ther. 2020 Nov;18(11):1083-1092. doi: 10.1080/14787210.2020.1792288. Epub 2020 Jul 16.
4
Antifungals discovery: an insight into new strategies to combat antifungal resistance.
Lett Appl Microbiol. 2018 Jan;66(1):2-13. doi: 10.1111/lam.12820. Epub 2017 Dec 11.
5
An insight into new strategies to combat antifungal drug resistance.
Drug Des Devel Ther. 2018 Nov 5;12:3807-3816. doi: 10.2147/DDDT.S185833. eCollection 2018.
6
Medically important fungi respond to azole drugs: an update.
Future Microbiol. 2015;10(8):1355-73. doi: 10.2217/FMB.15.47. Epub 2015 Aug 3.
8
Mechanisms of fungal resistance: an overview.
Drugs. 2002;62(7):1025-40. doi: 10.2165/00003495-200262070-00004.
9
Novel alkylated azoles as potent antifungals.
Eur J Med Chem. 2017 Jun 16;133:309-318. doi: 10.1016/j.ejmech.2017.03.075. Epub 2017 Mar 31.
10
Fungal cell membrane-promising drug target for antifungal therapy.
J Appl Microbiol. 2016 Dec;121(6):1498-1510. doi: 10.1111/jam.13301. Epub 2016 Nov 2.

引用本文的文献

1
The critical roles of bioactive sphingolipids in inflammation.
J Biol Chem. 2025 Jul 11;301(8):110475. doi: 10.1016/j.jbc.2025.110475.
2
Peptides in plant-microbe interactions: Functional diversity and pharmacological applications.
Cell Surf. 2025 May 15;13:100145. doi: 10.1016/j.tcsw.2025.100145. eCollection 2025 Jun.
3
The antimicrobial activity of ETD151 defensin is dictated by the presence of glycosphingolipids in the targeted organisms.
Proc Natl Acad Sci U S A. 2025 Feb 18;122(7):e2415524122. doi: 10.1073/pnas.2415524122. Epub 2025 Feb 12.
5
Regulation of cellular and systemic sphingolipid homeostasis.
Nat Rev Mol Cell Biol. 2024 Oct;25(10):802-821. doi: 10.1038/s41580-024-00742-y. Epub 2024 Jun 18.
6
Harnessing inter-kingdom metabolic disparities at the human-fungal interface for novel therapeutic approaches.
Front Mol Biosci. 2024 Apr 24;11:1386598. doi: 10.3389/fmolb.2024.1386598. eCollection 2024.
10
Role of sphingolipids in the host-pathogen interaction.
Biochim Biophys Acta Mol Cell Biol Lipids. 2023 Nov;1868(11):159384. doi: 10.1016/j.bbalip.2023.159384. Epub 2023 Sep 4.

本文引用的文献

4
New strategic insights into managing fungal biofilms.
Front Microbiol. 2015 Oct 6;6:1077. doi: 10.3389/fmicb.2015.01077. eCollection 2015.
5
Overview of Fungal Infections--The Italian Experience.
Semin Respir Crit Care Med. 2015 Oct;36(5):796-805. doi: 10.1055/s-0035-1562890. Epub 2015 Sep 23.
6
Emergence of Azole Resistance in Aspergillus.
Semin Respir Crit Care Med. 2015 Oct;36(5):673-80. doi: 10.1055/s-0035-1562894. Epub 2015 Sep 23.
7
Rate of FKS Mutations among Consecutive Candida Isolates Causing Bloodstream Infection.
Antimicrob Agents Chemother. 2015 Dec;59(12):7465-70. doi: 10.1128/AAC.01973-15. Epub 2015 Sep 21.
9
Medically important fungi respond to azole drugs: an update.
Future Microbiol. 2015;10(8):1355-73. doi: 10.2217/FMB.15.47. Epub 2015 Aug 3.
10
Therapeutic Impact of Sphingosine 1-phosphate Receptor Signaling in Multiple Sclerosis.
Mini Rev Med Chem. 2016;16(7):547-54. doi: 10.2174/1389557515666150709122517.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验