Suppr超能文献

从生化重建中洞察人类着丝粒的结构。

Insights from biochemical reconstitution into the architecture of human kinetochores.

机构信息

Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany.

Gene Center Munich, Ludwig-Maximilians-Universität München, Feodor-Lynen-Straße 25, 81377 Munich, Germany.

出版信息

Nature. 2016 Sep 8;537(7619):249-253. doi: 10.1038/nature19333. Epub 2016 Aug 31.

Abstract

Chromosomes are carriers of genetic material and their accurate transfer from a mother cell to its two daughters during cell division is of paramount importance for life. Kinetochores are crucial for this process, as they connect chromosomes with microtubules in the mitotic spindle. Kinetochores are multi-subunit complexes that assemble on specialized chromatin domains, the centromeres, that are able to enrich nucleosomes containing the histone H3 variant centromeric protein A (CENP-A). A group of several additional CENPs, collectively known as constitutive centromere associated network (CCAN), establish the inner kinetochore, whereas a ten-subunit assembly known as the KMN network creates a microtubule-binding site in the outer kinetochore. Interactions between CENP-A and two CCAN subunits, CENP-C and CENP-N, have been previously described, but a comprehensive understanding of CCAN organization and of how it contributes to the selective recognition of CENP-A has been missing. Here we use biochemical reconstitution to unveil fundamental principles of kinetochore organization and function. We show that cooperative interactions of a seven-subunit CCAN subcomplex, the CHIKMLN complex, determine binding selectivity for CENP-A over H3-nucleosomes. The CENP-A:CHIKMLN complex binds directly to the KMN network, resulting in a 21-subunit complex that forms a minimal high-affinity linkage between CENP-A nucleosomes and microtubules in vitro. This structural module is related to fungal point kinetochores, which bind a single microtubule. Its convolution with multiple CENP-A proteins may give rise to the regional kinetochores of higher eukaryotes, which bind multiple microtubules. Biochemical reconstitution paves the way for mechanistic and quantitative analyses of kinetochores.

摘要

染色体是遗传物质的载体,它们在细胞分裂过程中从母细胞准确传递到两个子细胞对于生命至关重要。动粒对于这个过程至关重要,因为它们将染色体与有丝分裂纺锤体中的微管连接起来。动粒是多亚基复合物,组装在特殊的染色质域——着丝粒上,这些区域能够富集含有组蛋白 H3 变体着丝粒蛋白 A (CENP-A)的核小体。一组几个额外的 CENPs,统称为组成性着丝粒相关网络 (CCAN),构成了内动粒,而一个由十个亚基组成的组装体,称为 KMN 网络,在动粒的外部分泌微管结合位点。CENP-A 与两个 CCAN 亚基,CENP-C 和 CENP-N 之间的相互作用以前已经有过描述,但对 CCAN 组织和它如何有助于对 CENP-A 的选择性识别的全面理解一直缺失。在这里,我们使用生化重建来揭示动粒组织和功能的基本原则。我们表明,七个亚基的 CCAN 亚复合物 CHIKMLN 复合物的合作相互作用决定了 CENP-A 对 H3-核小体的结合选择性。CENP-A:CHIKMLN 复合物直接与 KMN 网络结合,导致形成一个 21 个亚基的复合物,在体外形成 CENP-A 核小体和微管之间的最小高亲和力连接。这个结构模块与真菌点状动粒有关,后者结合一个微管。它与多个 CENP-A 蛋白的卷积可能导致高等真核生物的区域性动粒,这些动粒结合多个微管。生化重建为动粒的机制和定量分析铺平了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验