Suppr超能文献

动脉粥样硬化驱动的调节性T细胞可塑性导致形成功能失调的可塑性IFNγ+ Th1/调节性T细胞亚群。

Atherosclerosis-Driven Treg Plasticity Results in Formation of a Dysfunctional Subset of Plastic IFNγ+ Th1/Tregs.

作者信息

Butcher Matthew J, Filipowicz Adam R, Waseem Tayab C, McGary Christopher M, Crow Kevin J, Magilnick Nathaniel, Boldin Mark, Lundberg Patric S, Galkina Elena V

机构信息

From the Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk (M.J.B., A.R.F., T.C.W., C.M.M., K.J.C., P.S.L., E.V.G.); and Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA (N.M., M.B.).

出版信息

Circ Res. 2016 Nov 11;119(11):1190-1203. doi: 10.1161/CIRCRESAHA.116.309764. Epub 2016 Sep 15.

Abstract

RATIONALE

Forkhead box P3 T regulatory cells (Tregs) are key players in maintaining immune homeostasis. Evidence suggests that Tregs respond to environmental cues to permit or suppress inflammation. In atherosclerosis, Th1-driven inflammation affects Treg homeostasis, but the mechanisms governing this phenomenon are unclear.

OBJECTIVE

Here, we address whether atherosclerosis impacts Treg plasticity and functionality in Apoe mice, and what effect Treg plasticity might have on the pathology of atherosclerosis.

METHODS AND RESULTS

We demonstrate that atherosclerosis promotes Treg plasticity, resulting in the reduction of CXCR3 Tregs and the accumulation of an intermediate Th1-like interferon (IFN)-γCCR5 Treg subset (Th1/Tregs) within the aorta. Importantly, Th1/Tregs arise in atherosclerosis from bona fide Tregs, rather than from T-effector cells. We show that Th1/Tregs recovered from atherosclerotic mice are dysfunctional in suppression assays. Using an adoptive transfer system and plasticity-prone Mir146a Tregs, we demonstrate that elevated IFNγ Mir146a Th1/Tregs are unable to adequately reduce atherosclerosis, arterial Th1, or macrophage content within Apoe mice, in comparison to Mir146a Tregs. Finally, via single-cell RNA-sequencing and real-time -polymerase chain reaction, we show that Th1/Tregs possess a unique transcriptional phenotype characterized by coexpression of Treg and Th1 lineage genes and a downregulation of Treg-related genes, including Ikzf2, Ikzf4, Tigit, Lilrb4, and Il10. In addition, an ingenuity pathway analysis further implicates IFNγ, IFNα, interleukin-2, interleukin-7, CTLA-4 (cytotoxic T-lymphocyte-associated protein 4), T-cell receptor, and Csnk2b-related pathways in regulating Treg plasticity.

CONCLUSIONS

Atherosclerosis drives Treg plasticity, resulting in the accumulation of dysfunctional IFNγ Th1/Tregs that may permit further arterial inflammation and atherogenesis.

摘要

理论依据

叉头框P3调节性T细胞(Tregs)是维持免疫稳态的关键因素。有证据表明,Tregs会对环境信号做出反应,从而促进或抑制炎症。在动脉粥样硬化中,Th1驱动的炎症会影响Treg的稳态,但控制这一现象的机制尚不清楚。

目的

在此,我们探讨动脉粥样硬化是否会影响Apoe小鼠中Treg的可塑性和功能,以及Treg可塑性可能对动脉粥样硬化病理产生何种影响。

方法与结果

我们证明动脉粥样硬化会促进Treg的可塑性,导致主动脉内CXCR3 Tregs减少,以及中间型Th1样干扰素(IFN)-γCCR5 Treg亚群(Th1/Tregs)的积累。重要的是,动脉粥样硬化中的Th1/Tregs源自真正的Tregs,而非效应T细胞。我们发现,从动脉粥样硬化小鼠中分离出的Th1/Tregs在抑制试验中功能失调。通过过继转移系统和易于发生可塑性的Mir146a Tregs,我们证明,与Mir146a Tregs相比,IFNγ升高的Mir146a Th1/Tregs无法充分减轻Apoe小鼠的动脉粥样硬化、动脉Th1或巨噬细胞含量。最后,通过单细胞RNA测序和实时聚合酶链反应,我们发现Th1/Tregs具有独特的转录表型,其特征是Treg和Th1谱系基因的共表达以及Treg相关基因(包括Ikzf2、Ikzf4、Tigit、Lilrb4和Il10)的下调。此外,一项 Ingenuity 通路分析进一步表明,IFNγ、IFNα、白细胞介素-2、白细胞介素-7、细胞毒性T淋巴细胞相关蛋白4(CTLA-4)、T细胞受体和酪蛋白激酶2β(Csnk2b)相关通路参与调节Treg的可塑性。

结论

动脉粥样硬化驱动Treg的可塑性,导致功能失调的IFNγ Th1/Tregs积累,这可能会进一步加剧动脉炎症和动脉粥样硬化的发生。

相似文献

1
Atherosclerosis-Driven Treg Plasticity Results in Formation of a Dysfunctional Subset of Plastic IFNγ+ Th1/Tregs.
Circ Res. 2016 Nov 11;119(11):1190-1203. doi: 10.1161/CIRCRESAHA.116.309764. Epub 2016 Sep 15.
3
Cutting edge: the Th1 response inhibits the generation of peripheral regulatory T cells.
J Immunol. 2010 Jan 1;184(1):30-4. doi: 10.4049/jimmunol.0903412. Epub 2009 Nov 30.
4
AKT isoforms modulate Th1-like Treg generation and function in human autoimmune disease.
EMBO Rep. 2016 Aug;17(8):1169-83. doi: 10.15252/embr.201541905. Epub 2016 Jun 16.
5
The Th17/Treg functional imbalance during atherogenesis in ApoE(-/-) mice.
Cytokine. 2010 Feb;49(2):185-93. doi: 10.1016/j.cyto.2009.09.007. Epub 2009 Oct 27.
6
Defective leptin/leptin receptor signaling improves regulatory T cell immune response and protects mice from atherosclerosis.
Arterioscler Thromb Vasc Biol. 2007 Dec;27(12):2691-8. doi: 10.1161/ATVBAHA.107.149567. Epub 2007 Aug 9.
8
Oxidized Phospholipid oxPAPC Alters Regulatory T-Cell Differentiation and Decreases Their Protective Function in Atherosclerosis in Mice.
Arterioscler Thromb Vasc Biol. 2023 Nov;43(11):2119-2132. doi: 10.1161/ATVBAHA.123.319674. Epub 2023 Sep 7.
10
T-bet(+) Treg cells undergo abortive Th1 cell differentiation due to impaired expression of IL-12 receptor β2.
Immunity. 2012 Sep 21;37(3):501-10. doi: 10.1016/j.immuni.2012.05.031. Epub 2012 Sep 6.

引用本文的文献

1
Aging reshapes the adaptive immune system from healer to saboteur.
Nat Aging. 2025 Aug;5(8):1393-1403. doi: 10.1038/s43587-025-00906-1. Epub 2025 Aug 14.
2
Atherosclerosis and Insulin Resistance: Is There a Link Between Them?
Biomedicines. 2025 May 23;13(6):1291. doi: 10.3390/biomedicines13061291.
3
Positron Emission Tomography Imaging of the Adaptive Immune System in Cardiovascular Diseases.
Chem Biomed Imaging. 2025 Mar 19;3(4):209-224. doi: 10.1021/cbmi.4c00117. eCollection 2025 Apr 28.
4
Targeting gut microbiota to regulate the adaptive immune response in atherosclerosis.
Front Cardiovasc Med. 2025 Jan 31;12:1502124. doi: 10.3389/fcvm.2025.1502124. eCollection 2025.
6
Immunometabolism of Tregs: mechanisms, adaptability, and therapeutic implications in diseases.
Front Immunol. 2025 Jan 23;16:1536020. doi: 10.3389/fimmu.2025.1536020. eCollection 2025.
8
Immunological Regulation of Fibrosis During Heart Failure: It Takes Two to Tango.
Biomolecules. 2025 Jan 3;15(1):58. doi: 10.3390/biom15010058.
9
Atherosclerosis antigens as targets for immunotherapy.
Nat Cardiovasc Res. 2023 Dec;2(12):1129-1147. doi: 10.1038/s44161-023-00376-x. Epub 2023 Dec 11.
10
Moving from lipids to leukocytes: inflammation and immune cells in atherosclerosis.
Front Cell Dev Biol. 2024 Aug 5;12:1446758. doi: 10.3389/fcell.2024.1446758. eCollection 2024.

本文引用的文献

1
Harnessing the plasticity of CD4(+) T cells to treat immune-mediated disease.
Nat Rev Immunol. 2016 Mar;16(3):149-63. doi: 10.1038/nri.2015.18. Epub 2016 Feb 15.
2
Regulatory T cells in cardiovascular diseases.
Nat Rev Cardiol. 2016 Mar;13(3):167-79. doi: 10.1038/nrcardio.2015.169. Epub 2015 Nov 3.
3
Origin and functions of pro-inflammatory cytokine producing Foxp3+ regulatory T cells.
Cytokine. 2015 Nov;76(1):13-24. doi: 10.1016/j.cyto.2015.07.005. Epub 2015 Jul 10.
4
MicroRNA regulation of lymphocyte tolerance and autoimmunity.
J Clin Invest. 2015 Jun;125(6):2242-9. doi: 10.1172/JCI78090. Epub 2015 Jun 1.
5
Protein kinase CK2 enables regulatory T cells to suppress excessive TH2 responses in vivo.
Nat Immunol. 2015 Mar;16(3):267-75. doi: 10.1038/ni.3083. Epub 2015 Jan 19.
6
Treating atherosclerosis with regulatory T cells.
Arterioscler Thromb Vasc Biol. 2015 Feb;35(2):280-7. doi: 10.1161/ATVBAHA.114.303568. Epub 2014 Nov 20.
8
Single-cell RNA-seq reveals dynamic paracrine control of cellular variation.
Nature. 2014 Jun 19;510(7505):363-9. doi: 10.1038/nature13437. Epub 2014 Jun 11.
9
Single-cell RNA sequencing reveals T helper cells synthesizing steroids de novo to contribute to immune homeostasis.
Cell Rep. 2014 May 22;7(4):1130-42. doi: 10.1016/j.celrep.2014.04.011. Epub 2014 May 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验