Pereira Ester M, Labilloy Anatália, Eshbach Megan L, Roy Ankita, Subramanya Arohan R, Monte Semiramis, Labilloy Guillaume, Weisz Ora A
Laboratory of Immunogenetics and Molecular Biology, Federal University of Piaui, Teresina, Brazil.
Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and.
Am J Physiol Renal Physiol. 2016 Nov 1;311(5):F1015-F1024. doi: 10.1152/ajprenal.00283.2016. Epub 2016 Sep 28.
Fabry nephropathy is a major cause of morbidity and premature death in patients with Fabry disease (FD), a rare X-linked lysosomal storage disorder. Gb3, the main substrate of α-galactosidase A (α-Gal A), progressively accumulates within cells in a variety of tissues. Establishment of cell models has been useful as a tool for testing hypotheses of disease pathogenesis. We applied CRISPR/Cas9 genome editing technology to the GLA gene to develop human kidney cell models of FD in human immortalized podocytes, which are the main affected renal cell type. Our podocytes lack detectable α-Gal A activity and have increased levels of Gb3. To explore different pathways that could have distinct patterns of activation under conditions of α-gal A deficiency, we used a high-throughput antibody array to perform phosphorylation profiling of CRISPR/Cas9-edited and control podocytes. Changes in both total protein levels and in phosphorylation status per site were observed. Analysis of our candidate proteins suggests that multiple signaling pathways are impaired in FD.
法布里肾病是法布里病(FD)患者发病和过早死亡的主要原因,法布里病是一种罕见的X连锁溶酶体贮积症。α-半乳糖苷酶A(α-Gal A)的主要底物Gb3在多种组织的细胞内逐渐积累。建立细胞模型作为一种工具,有助于检验疾病发病机制的假说。我们将CRISPR/Cas9基因组编辑技术应用于GLA基因,在人永生化足细胞(主要受影响的肾细胞类型)中建立FD的人肾细胞模型。我们的足细胞缺乏可检测到的α-Gal A活性,且Gb3水平升高。为了探索在α-Gal A缺乏条件下可能具有不同激活模式的不同途径,我们使用高通量抗体阵列对CRISPR/Cas9编辑的足细胞和对照足细胞进行磷酸化分析。观察到总蛋白水平和每个位点的磷酸化状态均有变化。对我们的候选蛋白的分析表明,FD中多种信号通路受损。