Suppr超能文献

利用CRISPR/Cas9技术构建的法布里病人类永生化足细胞模型的表征及磷酸化蛋白质组学分析

Characterization and phosphoproteomic analysis of a human immortalized podocyte model of Fabry disease generated using CRISPR/Cas9 technology.

作者信息

Pereira Ester M, Labilloy Anatália, Eshbach Megan L, Roy Ankita, Subramanya Arohan R, Monte Semiramis, Labilloy Guillaume, Weisz Ora A

机构信息

Laboratory of Immunogenetics and Molecular Biology, Federal University of Piaui, Teresina, Brazil.

Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and.

出版信息

Am J Physiol Renal Physiol. 2016 Nov 1;311(5):F1015-F1024. doi: 10.1152/ajprenal.00283.2016. Epub 2016 Sep 28.

Abstract

Fabry nephropathy is a major cause of morbidity and premature death in patients with Fabry disease (FD), a rare X-linked lysosomal storage disorder. Gb3, the main substrate of α-galactosidase A (α-Gal A), progressively accumulates within cells in a variety of tissues. Establishment of cell models has been useful as a tool for testing hypotheses of disease pathogenesis. We applied CRISPR/Cas9 genome editing technology to the GLA gene to develop human kidney cell models of FD in human immortalized podocytes, which are the main affected renal cell type. Our podocytes lack detectable α-Gal A activity and have increased levels of Gb3. To explore different pathways that could have distinct patterns of activation under conditions of α-gal A deficiency, we used a high-throughput antibody array to perform phosphorylation profiling of CRISPR/Cas9-edited and control podocytes. Changes in both total protein levels and in phosphorylation status per site were observed. Analysis of our candidate proteins suggests that multiple signaling pathways are impaired in FD.

摘要

法布里肾病是法布里病(FD)患者发病和过早死亡的主要原因,法布里病是一种罕见的X连锁溶酶体贮积症。α-半乳糖苷酶A(α-Gal A)的主要底物Gb3在多种组织的细胞内逐渐积累。建立细胞模型作为一种工具,有助于检验疾病发病机制的假说。我们将CRISPR/Cas9基因组编辑技术应用于GLA基因,在人永生化足细胞(主要受影响的肾细胞类型)中建立FD的人肾细胞模型。我们的足细胞缺乏可检测到的α-Gal A活性,且Gb3水平升高。为了探索在α-Gal A缺乏条件下可能具有不同激活模式的不同途径,我们使用高通量抗体阵列对CRISPR/Cas9编辑的足细胞和对照足细胞进行磷酸化分析。观察到总蛋白水平和每个位点的磷酸化状态均有变化。对我们的候选蛋白的分析表明,FD中多种信号通路受损。

相似文献

1
Characterization and phosphoproteomic analysis of a human immortalized podocyte model of Fabry disease generated using CRISPR/Cas9 technology.
Am J Physiol Renal Physiol. 2016 Nov 1;311(5):F1015-F1024. doi: 10.1152/ajprenal.00283.2016. Epub 2016 Sep 28.
4
Accumulation of α-synuclein mediates podocyte injury in Fabry nephropathy.
J Clin Invest. 2023 Jun 1;133(11):e157782. doi: 10.1172/JCI157782.
5
Cardiac manifestations of Fabry disease in G3Stg/GlaKO and GlaKO mouse models-Translation to Fabry disease patients.
PLoS One. 2024 May 31;19(5):e0304415. doi: 10.1371/journal.pone.0304415. eCollection 2024.
6
Using CRISPR/Cas9-Mediated GLA Gene Knockout as an In Vitro Drug Screening Model for Fabry Disease.
Int J Mol Sci. 2016 Dec 13;17(12):2089. doi: 10.3390/ijms17122089.
8
CRISPR/Cas9-based GLA knockout to generate the female Fabry disease human induced pluripotent stem cell line MHHi001-A-15.
Stem Cell Res. 2024 Sep;79:103478. doi: 10.1016/j.scr.2024.103478. Epub 2024 Jun 20.
10
α-Galactosidase A knockout mice: progressive organ pathology resembles the type 2 later-onset phenotype of Fabry disease.
Am J Pathol. 2015 Mar;185(3):651-65. doi: 10.1016/j.ajpath.2014.11.004. Epub 2014 Dec 29.

引用本文的文献

1
Genome-wide expression analysis in a Fabry disease human podocyte cell line.
Heliyon. 2024 Jul 9;10(14):e34357. doi: 10.1016/j.heliyon.2024.e34357. eCollection 2024 Jul 30.
2
The role of podocyte injury in the pathogenesis of Fabry disease nephropathy.
J Bras Nefrol. 2024 Jul-Sep;46(3):e20240035. doi: 10.1590/2175-8239-JBN-2024-0035en.
3
Megalin, cubilin, and Dab2 drive endocytic flux in kidney proximal tubule cells.
Mol Biol Cell. 2023 Jun 1;34(7):ar74. doi: 10.1091/mbc.E22-11-0510. Epub 2023 Apr 26.
4
Optimizing human α-galactosidase for treatment of Fabry disease.
Sci Rep. 2023 Mar 23;13(1):4748. doi: 10.1038/s41598-023-31777-4.
5
WNK kinases sense molecular crowding and rescue cell volume via phase separation.
Cell. 2022 Nov 23;185(24):4488-4506.e20. doi: 10.1016/j.cell.2022.09.042. Epub 2022 Oct 31.
6
Reduced α-galactosidase A activity in zebrafish ( mirrors distinct features of Fabry nephropathy phenotype.
Mol Genet Metab Rep. 2022 Feb 17;31:100851. doi: 10.1016/j.ymgmr.2022.100851. eCollection 2022 Jun.
7
Cubilin-, megalin-, and Dab2-dependent transcription revealed by CRISPR/Cas9 knockout in kidney proximal tubule cells.
Am J Physiol Renal Physiol. 2022 Jan 1;322(1):F14-F26. doi: 10.1152/ajprenal.00259.2021. Epub 2021 Nov 8.
8
Ion channels and pain in Fabry disease.
Mol Pain. 2021 Jan-Dec;17:17448069211033172. doi: 10.1177/17448069211033172.
9
Biomarkers in Fabry Disease. Implications for Clinical Diagnosis and Follow-up.
J Clin Med. 2021 Apr 13;10(8):1664. doi: 10.3390/jcm10081664.
10
RIPK3 Contributes to Lyso-Gb3-Induced Podocyte Death.
Cells. 2021 Jan 27;10(2):245. doi: 10.3390/cells10020245.

本文引用的文献

1
Epithelial-Mesenchymal Transition in Kidney Tubular Epithelial Cells Induced by Globotriaosylsphingosine and Globotriaosylceramide.
PLoS One. 2015 Aug 20;10(8):e0136442. doi: 10.1371/journal.pone.0136442. eCollection 2015.
2
Proteomic analysis of the kidney filtration barrier--Problems and perspectives.
Proteomics Clin Appl. 2015 Dec;9(11-12):1053-68. doi: 10.1002/prca.201400201. Epub 2015 Aug 11.
3
Genome-Wide Analysis of Wilms' Tumor 1-Controlled Gene Expression in Podocytes Reveals Key Regulatory Mechanisms.
J Am Soc Nephrol. 2015 Sep;26(9):2097-104. doi: 10.1681/ASN.2014090940. Epub 2015 Jan 30.
4
When foots come first: early signs of podocyte injury in Fabry nephropathy without proteinuria.
Nephron. 2015;129(1):3-5. doi: 10.1159/000369307. Epub 2015 Jan 15.
5
DNA double-strand break repair in a cellular context.
Clin Oncol (R Coll Radiol). 2014 May;26(5):243-9. doi: 10.1016/j.clon.2014.02.004. Epub 2014 Mar 11.
7
Vasopressin-2 receptor signaling and autosomal dominant polycystic kidney disease: from bench to bedside and back again.
J Am Soc Nephrol. 2014 Jun;25(6):1140-7. doi: 10.1681/ASN.2013101037. Epub 2014 Feb 20.
8
A novel source of cultured podocytes.
PLoS One. 2013 Dec 12;8(12):e81812. doi: 10.1371/journal.pone.0081812. eCollection 2013.
9
Insulin directly stimulates VEGF-A production in the glomerular podocyte.
Am J Physiol Renal Physiol. 2013 Jul 15;305(2):F182-8. doi: 10.1152/ajprenal.00548.2012. Epub 2013 May 22.
10
Molecular fingerprinting of the podocyte reveals novel gene and protein regulatory networks.
Kidney Int. 2013 Jun;83(6):1052-64. doi: 10.1038/ki.2012.487. Epub 2013 Jan 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验