Suppr超能文献

种子序列之外的配对支持微小RNA靶向特异性。

Pairing beyond the Seed Supports MicroRNA Targeting Specificity.

作者信息

Broughton James P, Lovci Michael T, Huang Jessica L, Yeo Gene W, Pasquinelli Amy E

机构信息

Division of Biology, University of California, San Diego, La Jolla, CA 92093-0349, USA.

Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, Stem Cell Program, University of California, San Diego, Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA 92037, USA.

出版信息

Mol Cell. 2016 Oct 20;64(2):320-333. doi: 10.1016/j.molcel.2016.09.004. Epub 2016 Oct 6.

Abstract

To identify endogenous miRNA-target sites, we isolated AGO-bound RNAs from Caenorhabditis elegans by individual-nucleotide resolution crosslinking immunoprecipitation (iCLIP), which fortuitously also produced miRNA-target chimeric reads. Through the analysis of thousands of reproducible chimeras, pairing to the miRNA seed emerged as the predominant motif associated with functional interactions. Unexpectedly, we discovered that additional pairing to 3' sequences is prevalent in the majority of target sites and leads to specific targeting by members of miRNA families. By editing an endogenous target site, we demonstrate that 3' pairing determines targeting by specific miRNA family members and that seed pairing is not always sufficient for functional target interactions. Finally, we present a simplified method, chimera PCR (ChimP), for the detection of specific miRNA-target interactions. Overall, our analysis revealed that sequences in the 5' as well as the 3' regions of a miRNA provide the information necessary for stable and specific miRNA-target interactions in vivo.

摘要

为了鉴定内源性miRNA靶位点,我们通过单核苷酸分辨率交联免疫沉淀(iCLIP)从秀丽隐杆线虫中分离AGO结合的RNA,该方法偶然也产生了miRNA-靶嵌合读数。通过对数千个可重复嵌合体的分析,与miRNA种子配对成为与功能相互作用相关的主要基序。出乎意料的是,我们发现大多数靶位点中与3'序列的额外配对很普遍,并导致miRNA家族成员的特异性靶向。通过编辑内源性靶位点,我们证明3'配对决定了特定miRNA家族成员的靶向,并且种子配对对于功能性靶相互作用并不总是足够的。最后,我们提出了一种简化的方法,嵌合体PCR(ChimP),用于检测特定的miRNA-靶相互作用。总体而言,我们的分析表明,miRNA的5'和3'区域中的序列为体内稳定和特异性的miRNA-靶相互作用提供了必要的信息。

相似文献

1
Pairing beyond the Seed Supports MicroRNA Targeting Specificity.
Mol Cell. 2016 Oct 20;64(2):320-333. doi: 10.1016/j.molcel.2016.09.004. Epub 2016 Oct 6.
2
Detection of microRNA-Target Interactions by Chimera PCR (ChimP).
Methods Mol Biol. 2018;1823:153-165. doi: 10.1007/978-1-4939-8624-8_12.
3
Identifying Argonaute binding sites in Caenorhabditis elegans using iCLIP.
Methods. 2013 Sep 15;63(2):119-25. doi: 10.1016/j.ymeth.2013.03.033. Epub 2013 Apr 10.
5
Autoregulation of microRNA biogenesis by let-7 and Argonaute.
Nature. 2012 Jun 28;486(7404):541-4. doi: 10.1038/nature11134.
6
Comprehensive discovery of endogenous Argonaute binding sites in Caenorhabditis elegans.
Nat Struct Mol Biol. 2010 Feb;17(2):173-9. doi: 10.1038/nsmb.1745. Epub 2010 Jan 10.
8
Molecular architecture of a miRNA-regulated 3' UTR.
RNA. 2008 Jul;14(7):1297-317. doi: 10.1261/rna.1082708. Epub 2008 May 7.
9
TEG-1 CD2BP2 controls miRNA levels by regulating miRISC stability in C. elegans and human cells.
Nucleic Acids Res. 2017 Feb 17;45(3):1488-1500. doi: 10.1093/nar/gkw836.
10
Computational analysis of microRNA targets in Caenorhabditis elegans.
Gene. 2006 Jan 3;365:2-10. doi: 10.1016/j.gene.2005.09.035. Epub 2005 Dec 13.

引用本文的文献

1
An ancient and essential miRNA family controls cellular interaction pathways in .
Sci Adv. 2025 Sep 5;11(36):eadz1934. doi: 10.1126/sciadv.adz1934. Epub 2025 Sep 3.
3
Non-Coding RNAs in Asthma: Regulators of Eosinophil Biology and Airway Inflammation.
Diagnostics (Basel). 2025 Jul 10;15(14):1750. doi: 10.3390/diagnostics15141750.
4
Perspectives on mitochondrial dysfunction in the regeneration of aging skeletal muscle.
Cell Mol Biol Lett. 2025 Jul 28;30(1):94. doi: 10.1186/s11658-025-00771-1.
5
Sequence, structure, and affinity of miR-34a binding sites determine repression efficacy.
Nucleic Acids Res. 2025 Jul 8;53(13). doi: 10.1093/nar/gkaf633.
6
miRBench: novel benchmark datasets for microRNA binding site prediction that mitigate against prevalent microRNA frequency class bias.
Bioinformatics. 2025 Jul 1;41(Supplement_1):i542-i551. doi: 10.1093/bioinformatics/btaf233.
7
A genome resource for the marine annelid Platynereis spp.
BMC Genomics. 2025 Jul 14;26(1):665. doi: 10.1186/s12864-025-11727-2.
8
Differential Expression of Host miRNAs During Ad14 and Ad14p1 Infection.
Viruses. 2025 Jun 11;17(6):838. doi: 10.3390/v17060838.
9
miR-486-5p Inhibits eNOS and Angiogenesis in Cultured Endothelial Cells by Targeting MAML3.
J Cell Mol Med. 2025 Jun;29(11):e70589. doi: 10.1111/jcmm.70589.
10
MicroRNA nanoformulation: a promising approach to anti-tumour activity.
Invest New Drugs. 2025 May 14. doi: 10.1007/s10637-025-01534-7.

本文引用的文献

3
4
Predicting effective microRNA target sites in mammalian mRNAs.
Elife. 2015 Aug 12;4:e05005. doi: 10.7554/eLife.05005.
5
A Dynamic Search Process Underlies MicroRNA Targeting.
Cell. 2015 Jul 2;162(1):96-107. doi: 10.1016/j.cell.2015.06.032.
7
Human Argonaute 2 Has Diverse Reaction Pathways on Target RNAs.
Mol Cell. 2015 Jul 2;59(1):117-24. doi: 10.1016/j.molcel.2015.04.027.
8
The let-7 microRNA directs vulval development through a single target.
Dev Cell. 2015 Feb 9;32(3):335-44. doi: 10.1016/j.devcel.2014.12.018.
9
Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals.
Cell Rep. 2015 Jan 13;10(2):170-7. doi: 10.1016/j.celrep.2014.12.019. Epub 2014 Dec 31.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验