Conboy John G
Biological Systems and Engineering Division Lawrence Berkeley National Laboratory Berkeley, CA 94720, USA.
Wiley Interdiscip Rev RNA. 2017 Mar;8(2). doi: 10.1002/wrna.1398. Epub 2016 Oct 17.
The Rbfox genes encode an ancient family of sequence-specific RNA binding proteins (RBPs) that are critical developmental regulators in multiple tissues including skeletal muscle, cardiac muscle, and brain. The hallmark of Rbfox proteins is a single high-affinity RRM domain, highly conserved from insects to humans, that binds preferentially to UGCAUG motifs at diverse regulatory sites in pre-mRNA introns, mRNA 3'UTRs, and pre-miRNAs hairpin structures. Versatile regulatory circuits operate on Rbfox pre-mRNA and mRNA to ensure proper expression of Rbfox1 protein isoforms, which then act on the broader transcriptome to regulate alternative splicing networks, mRNA stability and translation, and microRNA processing. Complex Rbfox expression is encoded in large genes encompassing multiple promoters and alternative splicing options that govern spatiotemporal expression of structurally distinct and tissue-specific protein isoforms with different classes of RNA targets. Nuclear Rbfox1 is a candidate master regulator that binds intronic UGCAUG elements to impact splicing efficiency of target alternative exons, many in transcripts for other splicing regulators. Tissue-specificity of Rbfox-mediated alternative splicing is executed by combinatorial regulation through the integrated activity of Rbfox proteins and synergistic or antagonistic splicing factors. Studies in animal models show that Rbfox1-related genes are critical for diverse developmental processes including germ cell differentiation and memory in Drosophila, neuronal migration and function in mouse brain, myoblast fusion and skeletal muscle function, and normal heart function. Finally, genetic and biochemical evidence suggest that aberrations in Rbfox-regulated circuitry are risk factors for multiple human disorders, especially neurodevelopmental disorders including epilepsy and autism, and cardiac hypertrophy. WIREs RNA 2017, 8:e1398. doi: 10.1002/wrna.1398 For further resources related to this article, please visit the WIREs website.
Rbfox基因编码一个古老的序列特异性RNA结合蛋白(RBP)家族,这些蛋白是包括骨骼肌、心肌和大脑在内的多种组织中关键的发育调节因子。Rbfox蛋白的标志是一个单一的高亲和力RRM结构域,从昆虫到人类高度保守,它优先结合前体mRNA内含子、mRNA 3'UTR和前体miRNA发夹结构中不同调控位点的UGCAUG基序。多种调控回路作用于Rbfox前体mRNA和mRNA,以确保Rbfox1蛋白异构体的正确表达,然后Rbfox1蛋白作用于更广泛的转录组,以调节可变剪接网络、mRNA稳定性和翻译以及微小RNA加工。复杂的Rbfox表达由包含多个启动子和可变剪接选项的大基因编码,这些启动子和可变剪接选项控制具有不同类RNA靶标的结构不同且组织特异性的蛋白异构体的时空表达。核Rbfox1是一种候选主调节因子,它结合内含子UGCAUG元件以影响靶标可变外显子的剪接效率,许多靶标可变外显子存在于其他剪接调节因子的转录本中。Rbfox介导的可变剪接的组织特异性通过Rbfox蛋白与协同或拮抗剪接因子的整合活性的组合调节来实现。动物模型研究表明,Rbfox1相关基因对多种发育过程至关重要,包括果蝇中的生殖细胞分化和记忆、小鼠大脑中的神经元迁移和功能、成肌细胞融合和骨骼肌功能以及正常心脏功能。最后,遗传和生化证据表明,Rbfox调节回路的异常是多种人类疾病的危险因素,尤其是包括癫痫和自闭症在内的神经发育障碍以及心脏肥大。WIREs RNA 2017, 8:e1398. doi: 10.1002/wrna.1398 有关本文的更多资源,请访问WIREs网站。