Suppr超能文献

SYVN1、NEDD8和FBXO2蛋白调节ΔF508囊性纤维化跨膜传导调节因子(CFTR)泛素介导的蛋白酶体降解。

SYVN1, NEDD8, and FBXO2 Proteins Regulate ΔF508 Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Ubiquitin-mediated Proteasomal Degradation.

作者信息

Ramachandran Shyam, Osterhaus Samantha R, Parekh Kalpaj R, Jacobi Ashley M, Behlke Mark A, McCray Paul B

机构信息

From the Department of Pediatrics, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242 and.

Integrated DNA Technologies, Coralville, Iowa 52241.

出版信息

J Biol Chem. 2016 Dec 2;291(49):25489-25504. doi: 10.1074/jbc.M116.754283. Epub 2016 Oct 18.

Abstract

We previously reported that delivery of a microRNA-138 mimic or siRNA against SIN3A to cultured cystic fibrosis (ΔF508/ΔF508) airway epithelia partially restored ΔF508-cystic fibrosis transmembrane conductance regulator (CFTR)-mediated cAMP-stimulated Cl conductance. We hypothesized that dissecting this microRNA-138/SIN3A-regulated gene network would identify individual proteins contributing to the rescue of ΔF508-CFTR function. Among the genes in the network, we rigorously validated candidates using functional CFTR maturation and electrolyte transport assays in polarized airway epithelia. We found that depletion of the ubiquitin ligase SYVN1, the ubiquitin/proteasome system regulator NEDD8, or the F-box protein FBXO2 partially restored ΔF508-CFTR-mediated Cl transport in primary cultures of human cystic fibrosis airway epithelia. Moreover, knockdown of SYVN1, NEDD8, or FBXO2 in combination with corrector compound 18 further potentiated rescue of ΔF508-CFTR-mediated Cl conductance. This study provides new knowledge of the CFTR biosynthetic pathway. It suggests that SYVN1 and FBXO2 represent two distinct multiprotein complexes that may degrade ΔF508-CFTR in airway epithelia and identifies a new role for NEDD8 in regulating ΔF508-CFTR ubiquitination.

摘要

我们之前报道过,将微小RNA-138模拟物或针对SIN3A的小干扰RNA导入培养的囊性纤维化(ΔF508/ΔF508)气道上皮细胞,可部分恢复由ΔF508-囊性纤维化跨膜传导调节因子(CFTR)介导的cAMP刺激的氯离子传导。我们推测,剖析这个微小RNA-138/SIN3A调控的基因网络,将鉴定出有助于挽救ΔF508-CFTR功能的单个蛋白质。在该网络中的基因里,我们在极化气道上皮细胞中使用功能性CFTR成熟和电解质转运测定法严格验证了候选基因。我们发现,泛素连接酶SYVN1、泛素/蛋白酶体系统调节因子NEDD8或F-box蛋白FBXO2的缺失,可部分恢复人囊性纤维化气道上皮细胞原代培养物中由ΔF508-CFTR介导的氯离子转运。此外,在SYVN1、NEDD8或FBXO2敲低的同时使用校正化合物18,可进一步增强对ΔF508-CFTR介导的氯离子传导的挽救作用。这项研究提供了关于CFTR生物合成途径的新知识。它表明SYVN1和FBXO2代表两种不同的多蛋白复合物,它们可能在气道上皮细胞中降解ΔF508-CFTR,并确定了NEDD8在调节ΔF508-CFTR泛素化方面的新作用。

相似文献

3
Chaperone-Independent Peripheral Quality Control of CFTR by RFFL E3 Ligase.
Dev Cell. 2018 Mar 26;44(6):694-708.e7. doi: 10.1016/j.devcel.2018.02.001. Epub 2018 Mar 1.
7
Nedd4-2 does not regulate wt-CFTR in human airway epithelial cells.
Am J Physiol Lung Cell Mol Physiol. 2012 Oct 15;303(8):L720-7. doi: 10.1152/ajplung.00409.2011. Epub 2012 Aug 17.
9
Failure of cAMP agonists to activate rescued deltaF508 CFTR in CFBE41o- airway epithelial monolayers.
J Physiol. 2005 Dec 1;569(Pt 2):601-15. doi: 10.1113/jphysiol.2005.096669. Epub 2005 Oct 6.

引用本文的文献

1
New insights into SUMOylation and NEDDylation in fibrosis.
Front Pharmacol. 2024 Dec 4;15:1476699. doi: 10.3389/fphar.2024.1476699. eCollection 2024.
2
Targeting ubiquitination machinery in cystic fibrosis: Where do we stand?
Cell Mol Life Sci. 2024 Jun 18;81(1):271. doi: 10.1007/s00018-024-05295-z.
4
Small-molecule correctors divert CFTR-F508del from ERAD by stabilizing sequential folding states.
Mol Biol Cell. 2024 Feb 1;35(2):ar15. doi: 10.1091/mbc.E23-08-0336. Epub 2023 Nov 29.
5
Keratin 8 is a scaffolding and regulatory protein of ERAD complexes.
Cell Mol Life Sci. 2022 Sep;79(9):503. doi: 10.1007/s00018-022-04528-3. Epub 2022 Sep 1.
9
Integrative chemogenomic analysis identifies small molecules that partially rescue ΔF508-CFTR for cystic fibrosis.
CPT Pharmacometrics Syst Pharmacol. 2021 May;10(5):500-510. doi: 10.1002/psp4.12626. Epub 2021 May 2.

本文引用的文献

1
Skp1: Implications in cancer and SCF-oriented anti-cancer drug discovery.
Pharmacol Res. 2016 Sep;111:34-42. doi: 10.1016/j.phrs.2016.05.027. Epub 2016 May 26.
2
Drugging the undruggables: exploring the ubiquitin system for drug development.
Cell Res. 2016 Apr;26(4):484-98. doi: 10.1038/cr.2016.31. Epub 2016 Mar 22.
3
Manipulating proteostasis to repair the F508del-CFTR defect in cystic fibrosis.
Mol Cell Pediatr. 2016 Dec;3(1):13. doi: 10.1186/s40348-016-0040-z. Epub 2016 Mar 14.
4
Evaluation of a systems biology approach to identify pharmacological correctors of the mutant CFTR chloride channel.
J Cyst Fibros. 2016 Jul;15(4):425-35. doi: 10.1016/j.jcf.2016.02.009. Epub 2016 Mar 10.
5
gp78 functions downstream of Hrd1 to promote degradation of misfolded proteins of the endoplasmic reticulum.
Mol Biol Cell. 2015 Dec 1;26(24):4438-50. doi: 10.1091/mbc.E15-06-0354. Epub 2015 Sep 30.
7
Modulation of the maladaptive stress response to manage diseases of protein folding.
PLoS Biol. 2014 Nov 18;12(11):e1001998. doi: 10.1371/journal.pbio.1001998. eCollection 2014 Nov.
9
Mechanism-based corrector combination restores ΔF508-CFTR folding and function.
Nat Chem Biol. 2013 Jul;9(7):444-54. doi: 10.1038/nchembio.1253. Epub 2013 May 12.
10
Efficient delivery of RNA interference oligonucleotides to polarized airway epithelia in vitro.
Am J Physiol Lung Cell Mol Physiol. 2013 Jul 1;305(1):L23-32. doi: 10.1152/ajplung.00426.2012. Epub 2013 Apr 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验