Suppr超能文献

果蝇视觉衰老自然变异的遗传结构。

Genetic architecture of natural variation in visual senescence in Drosophila.

作者信息

Carbone Mary Anna, Yamamoto Akihiko, Huang Wen, Lyman Rachel A, Meadors Tess Brune, Yamamoto Ryoan, Anholt Robert R H, Mackay Trudy F C

机构信息

Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695; W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC 27695; Program in Genetics, North Carolina State University, Raleigh, NC 27695.

Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695; W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC 27695; Program in Genetics, North Carolina State University, Raleigh, NC 27695; Initiative in Biological Complexity, North Carolina State University, Raleigh, NC 27695.

出版信息

Proc Natl Acad Sci U S A. 2016 Oct 25;113(43):E6620-E6629. doi: 10.1073/pnas.1613833113. Epub 2016 Oct 10.

Abstract

Senescence, i.e., functional decline with age, is a major determinant of health span in a rapidly aging population, but the genetic basis of interindividual variation in senescence remains largely unknown. Visual decline and age-related eye disorders are common manifestations of senescence, but disentangling age-dependent visual decline in human populations is challenging due to inability to control genetic background and variation in histories of environmental exposures. We assessed the genetic basis of natural variation in visual senescence by measuring age-dependent decline in phototaxis using Drosophila melanogaster as a genetic model system. We quantified phototaxis at 1, 2, and 4 wk of age in the sequenced, inbred lines of the Drosophila melanogaster Genetic Reference Panel (DGRP) and found an average decline in phototaxis with age. We observed significant genetic variation for phototaxis at each age and significant genetic variation in senescence of phototaxis that is only partly correlated with phototaxis. Genome-wide association analyses in the DGRP and a DGRP-derived outbred, advanced intercross population identified candidate genes and genetic networks associated with eye and nervous system development and function, including seven genes with human orthologs previously associated with eye diseases. Ninety percent of candidate genes were functionally validated with targeted RNAi-mediated suppression of gene expression. Absence of candidate genes previously implicated with longevity indicates physiological systems may undergo senescence independent of organismal life span. Furthermore, we show that genes that shape early developmental processes also contribute to senescence, demonstrating that senescence is part of a genetic continuum that acts throughout the life span.

摘要

衰老,即随着年龄增长而出现的功能衰退,是快速老龄化人口中健康寿命的主要决定因素,但衰老个体间差异的遗传基础仍 largely unknown。视力下降和与年龄相关的眼部疾病是衰老的常见表现,但由于无法控制遗传背景和环境暴露史的差异,在人群中区分年龄依赖性视力下降具有挑战性。我们以黑腹果蝇作为遗传模型系统,通过测量趋光性随年龄的下降来评估视觉衰老自然变异的遗传基础。我们在黑腹果蝇遗传参考面板(DGRP)的测序近交系中,对1周、2周和4周龄时的趋光性进行了量化,发现趋光性随年龄平均下降。我们观察到每个年龄趋光性的显著遗传变异,以及趋光性衰老的显著遗传变异,且仅部分与趋光性相关。在DGRP和一个源自DGRP的远交、高级杂交群体中进行的全基因组关联分析,确定了与眼睛和神经系统发育及功能相关的候选基因和遗传网络,包括七个具有先前与眼部疾病相关的人类直系同源基因。90%的候选基因通过靶向RNAi介导的基因表达抑制进行了功能验证。先前与长寿相关的候选基因缺失表明生理系统可能独立于生物体寿命而经历衰老。此外,我们表明塑造早期发育过程的基因也对衰老有贡献,这表明衰老属于一个贯穿整个生命周期起作用的遗传连续体的一部分。

相似文献

1
Genetic architecture of natural variation in visual senescence in Drosophila.
Proc Natl Acad Sci U S A. 2016 Oct 25;113(43):E6620-E6629. doi: 10.1073/pnas.1613833113. Epub 2016 Oct 10.
2
Genetic basis of natural variation in body pigmentation in Drosophila melanogaster.
Fly (Austin). 2015;9(2):75-81. doi: 10.1080/19336934.2015.1102807.
3
Context-dependent genetic architecture of Drosophila life span.
PLoS Biol. 2020 Mar 5;18(3):e3000645. doi: 10.1371/journal.pbio.3000645. eCollection 2020 Mar.
4
Genetic architecture of natural variation in Drosophila melanogaster aggressive behavior.
Proc Natl Acad Sci U S A. 2015 Jul 7;112(27):E3555-63. doi: 10.1073/pnas.1510104112. Epub 2015 Jun 22.
6
Analysis of natural variation reveals neurogenetic networks for Drosophila olfactory behavior.
Proc Natl Acad Sci U S A. 2013 Jan 15;110(3):1017-22. doi: 10.1073/pnas.1220168110. Epub 2012 Dec 31.
7
Genetic basis of variation in cocaine and methamphetamine consumption in outbred populations of .
Proc Natl Acad Sci U S A. 2021 Jun 8;118(23). doi: 10.1073/pnas.2104131118.
8
Quantitative trait loci affecting natural variation in Drosophila longevity.
Mech Ageing Dev. 2004 Mar;125(3):179-89. doi: 10.1016/j.mad.2003.12.008.
9
A Centered Genetic Network Contributes to Alcohol-Induced Variation in Drosophila Development.
G3 (Bethesda). 2018 Jul 31;8(8):2643-2653. doi: 10.1534/g3.118.200260.
10
Charting the genotype-phenotype map: lessons from the Drosophila melanogaster Genetic Reference Panel.
Wiley Interdiscip Rev Dev Biol. 2018 Jan;7(1). doi: 10.1002/wdev.289. Epub 2017 Aug 22.

引用本文的文献

2
Natural variation in age-related dopamine neuron degeneration is glutathione dependent and linked to life span.
Proc Natl Acad Sci U S A. 2024 Oct 15;121(42):e2403450121. doi: 10.1073/pnas.2403450121. Epub 2024 Oct 10.
4
The genetic basis of incipient sexual isolation in .
Proc Biol Sci. 2024 Aug;291(2027):20240672. doi: 10.1098/rspb.2024.0672. Epub 2024 Jul 24.
5
The genetic basis of variation in mating behavior.
iScience. 2024 Apr 27;27(5):109837. doi: 10.1016/j.isci.2024.109837. eCollection 2024 May 17.
7
The genetic basis of variation in immune defense against Lysinibacillus fusiformis infection in Drosophila melanogaster.
PLoS Pathog. 2023 Aug 7;19(8):e1010934. doi: 10.1371/journal.ppat.1010934. eCollection 2023 Aug.
8
The impact of geography and climate on the population structure and local adaptation in a wild bee.
Evol Appl. 2023 May 8;16(6):1154-1168. doi: 10.1111/eva.13558. eCollection 2023 Jun.
10

本文引用的文献

1
Mutations in the circadian gene period alter behavioral and biochemical responses to ethanol in Drosophila.
Behav Brain Res. 2016 Apr 1;302:213-9. doi: 10.1016/j.bbr.2016.01.041. Epub 2016 Jan 20.
3
FlyBase: establishing a Gene Group resource for Drosophila melanogaster.
Nucleic Acids Res. 2016 Jan 4;44(D1):D786-92. doi: 10.1093/nar/gkv1046. Epub 2015 Oct 13.
4
Aggression in Drosophila.
Behav Neurosci. 2015 Oct;129(5):549-63. doi: 10.1037/bne0000089. Epub 2015 Sep 7.
5
Genetic architecture of natural variation in Drosophila melanogaster aggressive behavior.
Proc Natl Acad Sci U S A. 2015 Jul 7;112(27):E3555-63. doi: 10.1073/pnas.1510104112. Epub 2015 Jun 22.
6
Longevity GWAS Using the Drosophila Genetic Reference Panel.
J Gerontol A Biol Sci Med Sci. 2015 Dec;70(12):1470-8. doi: 10.1093/gerona/glv047. Epub 2015 Apr 28.
7
The genetic basis for variation in olfactory behavior in Drosophila melanogaster.
Chem Senses. 2015 May;40(4):233-43. doi: 10.1093/chemse/bjv001. Epub 2015 Feb 15.
8
A versatile two-step CRISPR- and RMCE-based strategy for efficient genome engineering in Drosophila.
G3 (Bethesda). 2014 Oct 15;4(12):2409-18. doi: 10.1534/g3.114.013979.
9
Loss of Na(+)/K(+)-ATPase in Drosophila photoreceptors leads to blindness and age-dependent neurodegeneration.
Exp Neurol. 2014 Nov;261:791-801. doi: 10.1016/j.expneurol.2014.08.025. Epub 2014 Sep 7.
10
Insulin sensitivity in long-living Ames dwarf mice.
Age (Dordr). 2014;36(5):9709. doi: 10.1007/s11357-014-9709-1. Epub 2014 Aug 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验