Suppr超能文献

用于动物模型的功能丧失型遗传工具:跨物种和跨平台差异

Loss-of-function genetic tools for animal models: cross-species and cross-platform differences.

作者信息

Housden Benjamin E, Muhar Matthias, Gemberling Matthew, Gersbach Charles A, Stainier Didier Y R, Seydoux Geraldine, Mohr Stephanie E, Zuber Johannes, Perrimon Norbert

机构信息

Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA.

Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna 1030, Austria.

出版信息

Nat Rev Genet. 2017 Jan;18(1):24-40. doi: 10.1038/nrg.2016.118. Epub 2016 Oct 31.

Abstract

Our understanding of the genetic mechanisms that underlie biological processes has relied extensively on loss-of-function (LOF) analyses. LOF methods target DNA, RNA or protein to reduce or to ablate gene function. By analysing the phenotypes that are caused by these perturbations the wild-type function of genes can be elucidated. Although all LOF methods reduce gene activity, the choice of approach (for example, mutagenesis, CRISPR-based gene editing, RNA interference, morpholinos or pharmacological inhibition) can have a major effect on phenotypic outcomes. Interpretation of the LOF phenotype must take into account the biological process that is targeted by each method. The practicality and efficiency of LOF methods also vary considerably between model systems. We describe parameters for choosing the optimal combination of method and system, and for interpreting phenotypes within the constraints of each method.

摘要

我们对构成生物过程基础的遗传机制的理解在很大程度上依赖于功能丧失(LOF)分析。LOF方法作用于DNA、RNA或蛋白质,以减少或消除基因功能。通过分析这些干扰所导致的表型,可以阐明基因的野生型功能。尽管所有LOF方法都会降低基因活性,但方法的选择(例如诱变、基于CRISPR的基因编辑、RNA干扰、吗啉代或药理学抑制)可能对表型结果产生重大影响。对LOF表型的解释必须考虑每种方法所针对的生物过程。LOF方法的实用性和效率在不同模型系统之间也有很大差异。我们描述了选择方法和系统的最佳组合以及在每种方法的限制范围内解释表型的参数。

相似文献

1
Loss-of-function genetic tools for animal models: cross-species and cross-platform differences.
Nat Rev Genet. 2017 Jan;18(1):24-40. doi: 10.1038/nrg.2016.118. Epub 2016 Oct 31.
2
Maximizing mutagenesis with solubilized CRISPR-Cas9 ribonucleoprotein complexes.
Development. 2016 Jun 1;143(11):2025-37. doi: 10.1242/dev.134809. Epub 2016 Apr 29.
4
First report on CRISPR/Cas9-targeted mutagenesis in the Colorado potato beetle, Leptinotarsa decemlineata.
J Insect Physiol. 2020 Feb-Mar;121:104013. doi: 10.1016/j.jinsphys.2020.104013. Epub 2020 Jan 7.
5
Genome editing in sea urchin embryos by using a CRISPR/Cas9 system.
Dev Biol. 2016 Jan 15;409(2):420-8. doi: 10.1016/j.ydbio.2015.11.018. Epub 2015 Nov 26.
6
Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9.
Nature. 2016 May 5;533(7601):125-9. doi: 10.1038/nature17664. Epub 2016 Apr 27.
8
Genetic compensation induced by deleterious mutations but not gene knockdowns.
Nature. 2015 Aug 13;524(7564):230-3. doi: 10.1038/nature14580. Epub 2015 Jul 13.
9
Robust CRISPR/Cas9-Mediated Tissue-Specific Mutagenesis Reveals Gene Redundancy and Perdurance in .
Genetics. 2019 Feb;211(2):459-472. doi: 10.1534/genetics.118.301736. Epub 2018 Nov 30.

引用本文的文献

1
Dissecting the enhancer gene regulatory network in early Drosophila spermatogenesis.
Nat Commun. 2025 Jul 23;16(1):6766. doi: 10.1038/s41467-025-62046-9.
2
Establishment of a reverse genetics system for studying human immune functions in mice.
Sci Adv. 2025 Jul 11;11(28):eadu1561. doi: 10.1126/sciadv.adu1561. Epub 2025 Jul 9.
3
Protocol for adaptive laboratory evolution of S. cerevisiae by PEG/LiAc transformation and sequencing.
STAR Protoc. 2025 Jun 20;6(2):103857. doi: 10.1016/j.xpro.2025.103857. Epub 2025 May 31.
4
Enhanced RNA-targeting CRISPR-Cas technology in zebrafish.
Nat Commun. 2025 Mar 16;16(1):2591. doi: 10.1038/s41467-025-57792-9.
5
The CRISPR-Cas9 System Is Used to Edit the Autoimmune Regulator Gene in Vitro and in Vivo.
Adv Exp Med Biol. 2025;1471:269-283. doi: 10.1007/978-3-031-77921-3_10.
6
A recombinase-activated ribozyme to knock down endogenous gene expression in zebrafish.
PLoS Genet. 2025 Feb 7;21(2):e1011594. doi: 10.1371/journal.pgen.1011594. eCollection 2025 Feb.
7
Progressive transcriptomic shifts in evolved yeast strains following gene knockout.
iScience. 2024 Oct 21;27(11):111219. doi: 10.1016/j.isci.2024.111219. eCollection 2024 Nov 15.
9
Novel Arf1 Inhibitors Drive Cancer Stem Cell Aging and Potentiate Anti-Tumor Immunity.
Adv Sci (Weinh). 2024 Oct;11(39):e2404442. doi: 10.1002/advs.202404442. Epub 2024 Sep 3.
10
Fine-Tuning Amyloid Precursor Protein Expression through Nonsense-Mediated mRNA Decay.
eNeuro. 2024 Jun 10;11(6). doi: 10.1523/ENEURO.0034-24.2024. Print 2024 Jun.

本文引用的文献

1
Versatile in vivo regulation of tumor phenotypes by dCas9-mediated transcriptional perturbation.
Proc Natl Acad Sci U S A. 2016 Jul 5;113(27):E3892-900. doi: 10.1073/pnas.1600582113. Epub 2016 Jun 20.
3
Genomic Copy Number Dictates a Gene-Independent Cell Response to CRISPR/Cas9 Targeting.
Cancer Discov. 2016 Aug;6(8):914-29. doi: 10.1158/2159-8290.CD-16-0154. Epub 2016 Jun 3.
4
Cas9-assisted recombineering in C. elegans: genome editing using in vivo assembly of linear DNAs.
Nucleic Acids Res. 2016 Sep 6;44(15):e128. doi: 10.1093/nar/gkw502. Epub 2016 Jun 1.
5
Comparison of Cas9 activators in multiple species.
Nat Methods. 2016 Jul;13(7):563-567. doi: 10.1038/nmeth.3871. Epub 2016 May 23.
6
Systematic comparison of CRISPR/Cas9 and RNAi screens for essential genes.
Nat Biotechnol. 2016 Jun;34(6):634-6. doi: 10.1038/nbt.3567. Epub 2016 May 9.
7
Maximizing mutagenesis with solubilized CRISPR-Cas9 ribonucleoprotein complexes.
Development. 2016 Jun 1;143(11):2025-37. doi: 10.1242/dev.134809. Epub 2016 Apr 29.
8
Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9.
Nature. 2016 May 5;533(7601):125-9. doi: 10.1038/nature17664. Epub 2016 Apr 27.
9
CRISPR knockout screening outperforms shRNA and CRISPRi in identifying essential genes.
Nat Biotechnol. 2016 Jun;34(6):631-3. doi: 10.1038/nbt.3536. Epub 2016 Apr 25.
10
Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage.
Nature. 2016 May 19;533(7603):420-4. doi: 10.1038/nature17946. Epub 2016 Apr 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验