Suppr超能文献

最大化电化学 DNA 传感器的信号增益。

Maximizing the Signal Gain of Electrochemical-DNA Sensors.

机构信息

Department of Chemistry and Biochemistry, and ‡Center for Bioengineering, University of California Santa Barbara , Santa Barbara, California 93106, United States.

出版信息

Anal Chem. 2016 Dec 6;88(23):11654-11662. doi: 10.1021/acs.analchem.6b03227. Epub 2016 Nov 22.

Abstract

Electrochemical DNA (E-DNA) sensors have emerged as a promising class of biosensors capable of detecting a wide range of molecular analytes (nucleic acids, proteins, small molecules, inorganic ions) without the need for exogenous reagents or wash steps. In these sensors, a binding-induced conformational change in an electrode-bound "probe" (a target-binding nucleic acid or nucleic-acid-peptide chimera) alters the location of an attached redox reporter, leading to a change in electron transfer that is typically monitored using square-wave voltammetry. Because signaling in this class of sensors relies on binding-induced changes in electron transfer rate, the signal gain of such sensors (change in signal upon the addition of saturating target) is dependent on the frequency of the square-wave potential pulse used to interrogate them, with the optimal square-wave frequency depending on the structure of the probe, the nature of the redox reporter, and other features of the sensor. Here, we show that, because it alters the driving force of the redox reaction and thus electron transfer kinetics, signal gain in this class of sensors is also strongly dependent on the amplitude of the square-wave potential pulse. Specifically, we show here that the simultaneous optimization of square-wave frequency and amplitude produces large (often more than 2-fold) increases in the signal gain of a wide range of E-DNA-type sensors.

摘要

电化学 DNA(E-DNA)传感器已成为一类很有前途的生物传感器,能够在无需外源试剂或洗涤步骤的情况下检测广泛的分子分析物(核酸、蛋白质、小分子、无机离子)。在这些传感器中,电极结合的“探针”(靶标结合核酸或核酸-肽嵌合体)的结合诱导构象变化会改变附着的氧化还原报告分子的位置,从而导致电子转移的变化,通常使用方波伏安法进行监测。由于这类传感器中的信号依赖于结合诱导的电子转移速率变化,因此这种传感器的信号增益(加入饱和靶标时信号的变化)取决于用于检测它们的方波电势脉冲的频率,最佳方波频率取决于探针的结构、氧化还原报告分子的性质以及传感器的其他特征。在这里,我们表明,由于它改变了氧化还原反应的驱动力,从而改变了电子转移动力学,因此这类传感器的信号增益也强烈依赖于方波电势脉冲的幅度。具体来说,我们在这里表明,同时优化方波频率和幅度会使广泛的 E-DNA 型传感器的信号增益大幅增加(通常超过 2 倍)。

相似文献

1
Maximizing the Signal Gain of Electrochemical-DNA Sensors.
Anal Chem. 2016 Dec 6;88(23):11654-11662. doi: 10.1021/acs.analchem.6b03227. Epub 2016 Nov 22.
3
Folding- and Dynamics-Based Electrochemical DNA Sensors.
Methods Enzymol. 2017;589:221-252. doi: 10.1016/bs.mie.2017.02.001. Epub 2017 Mar 14.
4
Effect of structure variation of the aptamer-DNA duplex probe on the performance of displacement-based electrochemical aptamer sensors.
Biosens Bioelectron. 2016 Mar 15;77:174-81. doi: 10.1016/j.bios.2015.09.035. Epub 2015 Sep 16.
6
Rapid Two-Millisecond Interrogation of Electrochemical, Aptamer-Based Sensor Response Using Intermittent Pulse Amperometry.
ACS Sens. 2018 Jun 22;3(6):1203-1209. doi: 10.1021/acssensors.8b00278. Epub 2018 May 24.
8
Folding-based electrochemical biosensors: the case for responsive nucleic acid architectures.
Acc Chem Res. 2010 Apr 20;43(4):496-505. doi: 10.1021/ar900165x.
9
Effect of redox label tether length and flexibility on sensor performance of displacement-based electrochemical DNA sensors.
Anal Chim Acta. 2014 Feb 17;812:176-83. doi: 10.1016/j.aca.2013.12.040. Epub 2014 Jan 9.
10
Finding the Lost Dissociation Constant of Electrochemical Aptamer-Based Biosensors.
Anal Chem. 2023 Jan 31;95(4):2229-2237. doi: 10.1021/acs.analchem.2c03566. Epub 2023 Jan 13.

引用本文的文献

1
Advancing Noninvasive Therapeutic Drug Monitoring via a 3D Microstructured Aptasensing Platform.
ACS Omega. 2025 Aug 6;10(32):35689-35697. doi: 10.1021/acsomega.5c02245. eCollection 2025 Aug 19.
2
Cost-effective, user-friendly detection and preconcentration of thrombin on a sustainable paper-based electrochemical platform.
Anal Bioanal Chem. 2025 Apr;417(9):1863-1872. doi: 10.1007/s00216-025-05764-9. Epub 2025 Feb 1.
3
Carboxylate-Terminated Electrode Surfaces Improve the Performance of Electrochemical Aptamer-Based Sensors.
ACS Appl Mater Interfaces. 2025 Feb 5;17(5):8706-8714. doi: 10.1021/acsami.4c21790. Epub 2025 Jan 22.
4
Modular DNA origami-based electrochemical detection of DNA and proteins.
Proc Natl Acad Sci U S A. 2025 Jan 7;122(1):e2311279121. doi: 10.1073/pnas.2311279121. Epub 2024 Dec 30.
6
Planar Disk μ-Aptasensors by Monolayer Assembly in a Dissolving Microdroplet.
Anal Chem. 2024 Aug 17. doi: 10.1021/acs.analchem.4c01043.
7
Nucleic acid-based wearable and implantable electrochemical sensors.
Chem Soc Rev. 2024 Jul 29;53(15):7960-7982. doi: 10.1039/d4cs00001c.

本文引用的文献

1
Reagentless, Structure-Switching, Electrochemical Aptamer-Based Sensors.
Annu Rev Anal Chem (Palo Alto Calif). 2016 Jun 12;9(1):163-81. doi: 10.1146/annurev-anchem-071015-041446. Epub 2016 Apr 6.
3
Real-time, aptamer-based tracking of circulating therapeutic agents in living animals.
Sci Transl Med. 2013 Nov 27;5(213):213ra165. doi: 10.1126/scitranslmed.3007095.
4
New approach to electrode kinetic measurements in square-wave voltammetry: amplitude-based quasireversible maximum.
Anal Chem. 2013 Jun 4;85(11):5586-94. doi: 10.1021/ac4008573. Epub 2013 May 23.
5
On the hopping efficiency of nanoparticles in the electron transfer across self-assembled monolayers.
Chemphyschem. 2013 Apr 2;14(5):952-7. doi: 10.1002/cphc.201200901. Epub 2013 Feb 7.
6
Unmediated by DNA electron transfer in redox-labeled DNA duplexes end-tethered to gold electrodes.
J Am Chem Soc. 2012 Sep 5;134(35):14499-507. doi: 10.1021/ja304864w. Epub 2012 Aug 23.
7
Electrochemical sandwich assay for attomole analysis of DNA and RNA from beer spoilage bacteria Lactobacillus brevis.
Biosens Bioelectron. 2012 Aug-Sep;37(1):99-106. doi: 10.1016/j.bios.2012.05.001. Epub 2012 May 11.
8
Quantification of transcription factor binding in cell extracts using an electrochemical, structure-switching biosensor.
J Am Chem Soc. 2012 Feb 22;134(7):3346-8. doi: 10.1021/ja2115663. Epub 2012 Feb 10.
9
Wash-free, electrochemical platform for the quantitative, multiplexed detection of specific antibodies.
Anal Chem. 2012 Jan 17;84(2):1098-103. doi: 10.1021/ac202757c. Epub 2012 Jan 3.
10
Polarity-switching electrochemical sensor for specific detection of single-nucleotide mismatches.
Angew Chem Int Ed Engl. 2011 Nov 18;50(47):11176-80. doi: 10.1002/anie.201103482. Epub 2011 Oct 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验