Suppr超能文献

基于 CRISPR/Cas9 介导的靶向突变的高通量功能基因组学工作流程在斑马鱼中的应用。

A high-throughput functional genomics workflow based on CRISPR/Cas9-mediated targeted mutagenesis in zebrafish.

机构信息

Developmental Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA.

Functional &Chemical Genomics Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA.

出版信息

Nat Protoc. 2016 Dec;11(12):2357-2375. doi: 10.1038/nprot.2016.141. Epub 2016 Oct 27.

Abstract

The zebrafish is a popular model organism for studying development and disease, and genetically modified zebrafish provide an essential tool for functional genomic studies. Numerous publications have demonstrated the efficacy of gene targeting in zebrafish using CRISPR/Cas9, and they have included descriptions of a variety of tools and methods for guide RNA synthesis and mutant identification. However, most of the published techniques are not readily scalable to increase throughput. We recently described a CRISPR/Cas9-based high-throughput mutagenesis and phenotyping pipeline in zebrafish. Here, we present a complete workflow for this pipeline, including target selection; cloning-free single-guide RNA (sgRNA) synthesis; microinjection; validation of the target-specific activity of the sgRNAs; founder screening to identify germline-transmitting mutations by fluorescence PCR; determination of the exact lesion by Sanger or next-generation sequencing (including software for analysis); and genotyping in the F or subsequent generations. Using these methods, sgRNAs can be evaluated in 3 d, zebrafish germline-transmitting mutations can be identified within 3 months and stable lines can be established within 6 months. Realistically, two researchers can target tens to hundreds of genes per year using this protocol.

摘要

斑马鱼是研究发育和疾病的一种常用模式生物,而基因修饰的斑马鱼则为功能基因组学研究提供了重要工具。大量出版物已经证明了 CRISPR/Cas9 在斑马鱼中的基因靶向的有效性,并且它们包括了用于指导 RNA 合成和突变体鉴定的各种工具和方法的描述。然而,大多数已发表的技术不容易扩展以提高通量。我们最近在斑马鱼中描述了一种基于 CRISPR/Cas9 的高通量诱变和表型分析的流水线。在这里,我们提供了该流水线的完整工作流程,包括靶标选择;无克隆单指导 RNA(sgRNA)合成;显微注射;sgRNA 对靶标特异性活性的验证;通过荧光 PCR 筛选鉴定种系传递突变的 founder;通过桑格或下一代测序确定确切的损伤(包括用于分析的软件);以及在 F 代或后续世代进行基因分型。使用这些方法,sgRNA 可以在 3 天内进行评估,斑马鱼种系传递突变可以在 3 个月内鉴定,稳定系可以在 6 个月内建立。实际上,两名研究人员可以使用该方案每年靶向数十到数百个基因。

相似文献

1
A high-throughput functional genomics workflow based on CRISPR/Cas9-mediated targeted mutagenesis in zebrafish.
Nat Protoc. 2016 Dec;11(12):2357-2375. doi: 10.1038/nprot.2016.141. Epub 2016 Oct 27.
2
High-throughput gene targeting and phenotyping in zebrafish using CRISPR/Cas9.
Genome Res. 2015 Jul;25(7):1030-42. doi: 10.1101/gr.186379.114. Epub 2015 Jun 5.
4
CRISPR-Cas9-Mediated Genomic Deletions Protocol in Zebrafish.
STAR Protoc. 2020 Dec 10;1(3):100208. doi: 10.1016/j.xpro.2020.100208. eCollection 2020 Dec 18.
5
Protocol for generating mutant zebrafish using CRISPR-Cas9 followed by quantitative evaluation of vascular formation.
STAR Protoc. 2023 Dec 15;4(4):102753. doi: 10.1016/j.xpro.2023.102753. Epub 2023 Dec 2.
6
Optimized CRISPR-Cas9 System for Genome Editing in Zebrafish.
Cold Spring Harb Protoc. 2016 Oct 3;2016(10):2016/10/pdb.prot086850. doi: 10.1101/pdb.prot086850.
7
Maximizing mutagenesis with solubilized CRISPR-Cas9 ribonucleoprotein complexes.
Development. 2016 Jun 1;143(11):2025-37. doi: 10.1242/dev.134809. Epub 2016 Apr 29.
8
Evaluation and rational design of guide RNAs for efficient CRISPR/Cas9-mediated mutagenesis in Ciona.
Dev Biol. 2017 May 1;425(1):8-20. doi: 10.1016/j.ydbio.2017.03.003. Epub 2017 Mar 22.
10
Generation of Targeted Mutations in Zebrafish Using the CRISPR/Cas System.
Methods Mol Biol. 2015;1332:205-17. doi: 10.1007/978-1-4939-2917-7_16.

引用本文的文献

1
Adaptive loss of shortwave-sensitive opsins during cartilaginous fish evolution.
Nat Commun. 2025 Aug 18;16(1):7684. doi: 10.1038/s41467-025-62544-w.
2
CRISPR-based functional genomics tools in vertebrate models.
Exp Mol Med. 2025 Jul;57(7):1355-1372. doi: 10.1038/s12276-025-01514-0. Epub 2025 Jul 31.
4
Human-specific gene expansions contribute to brain evolution.
Cell. 2025 Jul 18. doi: 10.1016/j.cell.2025.06.037.
6
The transcription factors Tfeb and Tfe3 are required for survival and embryonic development of pancreas and liver in zebrafish.
PLoS Genet. 2025 Jun 27;21(6):e1011754. doi: 10.1371/journal.pgen.1011754. eCollection 2025 Jun.
7
Bi-allelic pathogenic variants in TRMT1 disrupt tRNA modification and induce a neurodevelopmental disorder.
Am J Hum Genet. 2025 May 1;112(5):1117-1138. doi: 10.1016/j.ajhg.2025.03.015. Epub 2025 Apr 16.
9
CRISPR/Cas9 mediated generation of zebrafish f9a mutant as a model for hemophilia B.
Blood Coagul Fibrinolysis. 2025 Apr 1;36(3):90-98. doi: 10.1097/MBC.0000000000001355. Epub 2025 Mar 19.

本文引用的文献

1
High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects.
Nature. 2016 Jan 28;529(7587):490-5. doi: 10.1038/nature16526. Epub 2016 Jan 6.
2
Understanding and Editing the Zebrafish Genome.
Adv Genet. 2015;92:1-52. doi: 10.1016/bs.adgen.2015.09.002. Epub 2015 Nov 12.
3
Rationally engineered Cas9 nucleases with improved specificity.
Science. 2016 Jan 1;351(6268):84-8. doi: 10.1126/science.aad5227. Epub 2015 Dec 1.
4
CRISPRz: a database of zebrafish validated sgRNAs.
Nucleic Acids Res. 2016 Jan 4;44(D1):D822-6. doi: 10.1093/nar/gkv998. Epub 2015 Oct 4.
5
CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo.
Nat Methods. 2015 Oct;12(10):982-8. doi: 10.1038/nmeth.3543. Epub 2015 Aug 31.
6
CRISPR-STAT: an easy and reliable PCR-based method to evaluate target-specific sgRNA activity.
Nucleic Acids Res. 2015 Dec 15;43(22):e157. doi: 10.1093/nar/gkv802. Epub 2015 Aug 7.
7
Expansion of CRISPR/Cas9 genome targeting sites in zebrafish by Csy4-based RNA processing.
Cell Res. 2015 Sep;25(9):1074-7. doi: 10.1038/cr.2015.95. Epub 2015 Aug 4.
8
Sequence determinants of improved CRISPR sgRNA design.
Genome Res. 2015 Aug;25(8):1147-57. doi: 10.1101/gr.191452.115. Epub 2015 Jun 10.
9
High-throughput gene targeting and phenotyping in zebrafish using CRISPR/Cas9.
Genome Res. 2015 Jul;25(7):1030-42. doi: 10.1101/gr.186379.114. Epub 2015 Jun 5.
10
A Multifunctional Mutagenesis System for Analysis of Gene Function in Zebrafish.
G3 (Bethesda). 2015 Apr 2;5(6):1283-99. doi: 10.1534/g3.114.015842.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验