Suppr超能文献

组成性糖酵解代谢支持病毒感染期间CD8 T细胞效应记忆分化。

Constitutive Glycolytic Metabolism Supports CD8 T Cell Effector Memory Differentiation during Viral Infection.

作者信息

Phan Anthony T, Doedens Andrew L, Palazon Asis, Tyrakis Petros A, Cheung Kitty P, Johnson Randall S, Goldrath Ananda W

机构信息

Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.

Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2, UK.

出版信息

Immunity. 2016 Nov 15;45(5):1024-1037. doi: 10.1016/j.immuni.2016.10.017. Epub 2016 Nov 8.

Abstract

Extensive metabolic changes accompany T cell activation, including a switch to glycolytic energy production and increased biosynthesis. Recent studies suggest that subsequent return to reliance on oxidative phosphorylation and increasing spare respiratory capacity are essential for the differentiation of memory CD8 T cells. In contrast, we found that constitutive glycolytic metabolism and suppression of oxidative phosphorylation in CD8 T cells, achieved by conditional deletion of hypoxia-inducible factor regulator Vhl, accelerated CD8 memory cell differentiation during viral infection. Despite sustained glycolysis, CD8 memory cells emerged that upregulated key memory-associated cytokine receptors and transcription factors and showed a heightened response to secondary challenge. In addition, increased glycolysis not only permitted memory formation, but it also favored the formation of long-lived effector-memory CD8 T cells. These data redefine the role of cellular metabolism in memory cell differentiation, showing that reliance on glycolytic metabolism does not hinder formation of a protective memory population.

摘要

T细胞活化伴随着广泛的代谢变化,包括转向糖酵解能量产生和生物合成增加。最近的研究表明,随后恢复对氧化磷酸化的依赖并增加备用呼吸能力对于记忆性CD8 T细胞的分化至关重要。相比之下,我们发现,通过条件性缺失缺氧诱导因子调节因子Vhl,在CD8 T细胞中实现组成性糖酵解代谢并抑制氧化磷酸化,可在病毒感染期间加速CD8记忆细胞分化。尽管糖酵解持续存在,但仍出现了上调关键记忆相关细胞因子受体和转录因子并对二次攻击表现出增强反应的CD8记忆细胞。此外,增加的糖酵解不仅允许记忆形成,而且还有利于形成长寿效应记忆性CD8 T细胞。这些数据重新定义了细胞代谢在记忆细胞分化中的作用,表明对糖酵解代谢的依赖并不妨碍保护性记忆群体的形成。

相似文献

1
Constitutive Glycolytic Metabolism Supports CD8 T Cell Effector Memory Differentiation during Viral Infection.
Immunity. 2016 Nov 15;45(5):1024-1037. doi: 10.1016/j.immuni.2016.10.017. Epub 2016 Nov 8.
2
Signal 3 requirement for memory CD8+ T-cell activation is determined by the infectious pathogen.
Eur J Immunol. 2011 Nov;41(11):3176-86. doi: 10.1002/eji.201141537. Epub 2011 Sep 26.
3
Transient expression of ZBTB32 in anti-viral CD8+ T cells limits the magnitude of the effector response and the generation of memory.
PLoS Pathog. 2017 Aug 21;13(8):e1006544. doi: 10.1371/journal.ppat.1006544. eCollection 2017 Aug.
4
Distinct roles for IL-2 and IL-15 in the differentiation and survival of CD8+ effector and memory T cells.
J Immunol. 2010 Jun 15;184(12):6719-30. doi: 10.4049/jimmunol.0904089. Epub 2010 May 14.
6
Translation is actively regulated during the differentiation of CD8 effector T cells.
Nat Immunol. 2017 Sep;18(9):1046-1057. doi: 10.1038/ni.3795. Epub 2017 Jul 17.
7
CD8alphaalpha-mediated survival and differentiation of CD8 memory T cell precursors.
Science. 2004 Apr 23;304(5670):590-3. doi: 10.1126/science.1092316.
8
Dynamic Changes in Chromatin Accessibility Occur in CD8 T Cells Responding to Viral Infection.
Immunity. 2016 Dec 20;45(6):1327-1340. doi: 10.1016/j.immuni.2016.10.028. Epub 2016 Dec 6.
9
FOXO3 regulates CD8 T cell memory by T cell-intrinsic mechanisms.
PLoS Pathog. 2012 Feb;8(2):e1002533. doi: 10.1371/journal.ppat.1002533. Epub 2012 Feb 16.
10
Vitamin D receptor signals regulate effector and memory CD8 T cell responses to infections in mice.
J Nutr. 2014 Dec;144(12):2073-82. doi: 10.3945/jn.114.202895. Epub 2014 Oct 15.

引用本文的文献

2
Mitochondrial unfolded protein response in regulatory T cell function: a protective mechanism in immune aging.
Front Immunol. 2025 Jun 30;16:1621759. doi: 10.3389/fimmu.2025.1621759. eCollection 2025.
3
Myoglobin expression improves T-cell metabolism and antitumor effector function.
J Immunother Cancer. 2025 Jun 3;13(6):e011503. doi: 10.1136/jitc-2025-011503.
4
Malonate promotes CD8 T cell memory formation via protein malonylation.
Cell Mol Immunol. 2025 May 14. doi: 10.1038/s41423-025-01294-7.
5
Mannose metabolism reshapes T cell differentiation to enhance anti-tumor immunity.
Cancer Cell. 2025 Jan 13;43(1):103-121.e8. doi: 10.1016/j.ccell.2024.11.003. Epub 2024 Dec 5.
6
Hypoxia and the Hypoxia-Inducible Factors in Lymphocyte Differentiation and Function.
Adv Exp Med Biol. 2024;1459:115-141. doi: 10.1007/978-3-031-62731-6_6.
7
AMPK drives both glycolytic and oxidative metabolism in murine and human T cells during graft-versus-host disease.
Blood Adv. 2024 Aug 13;8(15):4149-4162. doi: 10.1182/bloodadvances.2023010740.
8
The factor inhibiting HIF regulates T cell differentiation and anti-tumour efficacy.
Front Immunol. 2024 Apr 16;15:1293723. doi: 10.3389/fimmu.2024.1293723. eCollection 2024.
9
Metabolic rewiring and communication in cancer immunity.
Cell Chem Biol. 2024 May 16;31(5):862-883. doi: 10.1016/j.chembiol.2024.02.001. Epub 2024 Feb 29.
10
PX-478, an HIF-1α inhibitor, impairs mesoCAR T cell antitumor function in cervical cancer.
Front Oncol. 2024 Feb 15;14:1357801. doi: 10.3389/fonc.2024.1357801. eCollection 2024.

本文引用的文献

3
Hypoxia-inducible factors regulate T cell metabolism and function.
Mol Immunol. 2015 Dec;68(2 Pt C):527-35. doi: 10.1016/j.molimm.2015.08.004. Epub 2015 Aug 19.
4
Rapamycin Impairs Antitumor CD8+ T-cell Responses and Vaccine-Induced Tumor Eradication.
Cancer Res. 2015 Aug 15;75(16):3279-91. doi: 10.1158/0008-5472.CAN-15-0454. Epub 2015 Jun 29.
5
Metabolic control of type 1 regulatory T cell differentiation by AHR and HIF1-α.
Nat Med. 2015 Jun;21(6):638-46. doi: 10.1038/nm.3868. Epub 2015 May 25.
6
IL-7-Induced Glycerol Transport and TAG Synthesis Promotes Memory CD8+ T Cell Longevity.
Cell. 2015 May 7;161(4):750-61. doi: 10.1016/j.cell.2015.03.021.
7
RETRACTED: T cell metabolism. The protein LEM promotes CD8⁺ T cell immunity through effects on mitochondrial respiration.
Science. 2015 May 29;348(6238):995-1001. doi: 10.1126/science.aaa7516. Epub 2015 Apr 16.
8
The energy sensor AMPK regulates T cell metabolic adaptation and effector responses in vivo.
Immunity. 2015 Jan 20;42(1):41-54. doi: 10.1016/j.immuni.2014.12.030. Epub 2015 Jan 2.
9
Molecular regulation of effector and memory T cell differentiation.
Nat Immunol. 2014 Dec;15(12):1104-15. doi: 10.1038/ni.3031.
10
Tsc1 promotes the differentiation of memory CD8+ T cells via orchestrating the transcriptional and metabolic programs.
Proc Natl Acad Sci U S A. 2014 Oct 14;111(41):14858-63. doi: 10.1073/pnas.1404264111. Epub 2014 Sep 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验