Suppr超能文献

关于大型基因内适应度景观的(不)可预测性

On the (un)predictability of a large intragenic fitness landscape.

作者信息

Bank Claudia, Matuszewski Sebastian, Hietpas Ryan T, Jensen Jeffrey D

机构信息

Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal.

School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.

出版信息

Proc Natl Acad Sci U S A. 2016 Dec 6;113(49):14085-14090. doi: 10.1073/pnas.1612676113. Epub 2016 Nov 18.

Abstract

The study of fitness landscapes, which aims at mapping genotypes to fitness, is receiving ever-increasing attention. Novel experimental approaches combined with next-generation sequencing (NGS) methods enable accurate and extensive studies of the fitness effects of mutations, allowing us to test theoretical predictions and improve our understanding of the shape of the true underlying fitness landscape and its implications for the predictability and repeatability of evolution. Here, we present a uniquely large multiallelic fitness landscape comprising 640 engineered mutants that represent all possible combinations of 13 amino acid-changing mutations at 6 sites in the heat-shock protein Hsp90 in Saccharomyces cerevisiae under elevated salinity. Despite a prevalent pattern of negative epistasis in the landscape, we find that the global fitness peak is reached via four positively epistatic mutations. Combining traditional and extending recently proposed theoretical and statistical approaches, we quantify features of the global multiallelic fitness landscape. Using subsets of the data, we demonstrate that extrapolation beyond a known part of the landscape is difficult owing to both local ruggedness and amino acid-specific epistatic hotspots and that inference is additionally confounded by the nonrandom choice of mutations for experimental fitness landscapes.

摘要

旨在将基因型映射到适合度的适合度景观研究正受到越来越多的关注。新颖的实验方法与下一代测序(NGS)方法相结合,能够对突变的适合度效应进行准确而广泛的研究,使我们能够检验理论预测,并增进我们对真实潜在适合度景观形状及其对进化的可预测性和可重复性影响的理解。在此,我们展示了一个独特的大型多等位基因适合度景观,它包含640个工程突变体,代表了酿酒酵母热休克蛋白Hsp90中6个位点上13个氨基酸变化突变的所有可能组合,这些突变体处于高盐度环境下。尽管该景观中普遍存在负上位性模式,但我们发现通过四个正上位性突变可达到全局适合度峰值。结合传统方法并扩展最近提出的理论和统计方法,我们对全局多等位基因适合度景观的特征进行了量化。利用数据子集,我们证明由于局部崎岖性和氨基酸特异性上位性热点,超出景观已知部分进行外推很困难,并且实验适合度景观中突变的非随机选择进一步混淆了推断。

相似文献

1
On the (un)predictability of a large intragenic fitness landscape.
Proc Natl Acad Sci U S A. 2016 Dec 6;113(49):14085-14090. doi: 10.1073/pnas.1612676113. Epub 2016 Nov 18.
2
A systematic survey of an intragenic epistatic landscape.
Mol Biol Evol. 2015 Jan;32(1):229-38. doi: 10.1093/molbev/msu301. Epub 2014 Nov 3.
3
The fitness landscape of the codon space across environments.
Heredity (Edinb). 2018 Nov;121(5):422-437. doi: 10.1038/s41437-018-0125-7. Epub 2018 Aug 20.
4
The Valley-of-Death: reciprocal sign epistasis constrains adaptive trajectories in a constant, nutrient limiting environment.
Genomics. 2014 Dec;104(6 Pt A):431-7. doi: 10.1016/j.ygeno.2014.10.011. Epub 2014 Nov 1.
5
Shifting fitness landscapes in response to altered environments.
Evolution. 2013 Dec;67(12):3512-22. doi: 10.1111/evo.12207. Epub 2013 Aug 2.
6
Reciprocal sign epistasis between frequently experimentally evolved adaptive mutations causes a rugged fitness landscape.
PLoS Genet. 2011 Apr;7(4):e1002056. doi: 10.1371/journal.pgen.1002056. Epub 2011 Apr 28.
7
Pervasive contingency and entrenchment in a billion years of Hsp90 evolution.
Proc Natl Acad Sci U S A. 2018 Apr 24;115(17):4453-4458. doi: 10.1073/pnas.1718133115. Epub 2018 Apr 6.
8
Empirical fitness landscapes and the predictability of evolution.
Nat Rev Genet. 2014 Jul;15(7):480-90. doi: 10.1038/nrg3744. Epub 2014 Jun 10.
9
Comprehensive fitness maps of Hsp90 show widespread environmental dependence.
Elife. 2020 Mar 4;9:e53810. doi: 10.7554/eLife.53810.
10
Genomic investigations of evolutionary dynamics and epistasis in microbial evolution experiments.
Curr Opin Genet Dev. 2015 Dec;35:33-9. doi: 10.1016/j.gde.2015.08.008. Epub 2015 Sep 14.

引用本文的文献

1
Learning sequence-function relationships with scalable, interpretable Gaussian processes.
bioRxiv. 2025 Aug 19:2025.08.15.670613. doi: 10.1101/2025.08.15.670613.
3
Inference and visualization of complex genotype-phenotype maps with .
bioRxiv. 2025 Mar 15:2025.03.09.642267. doi: 10.1101/2025.03.09.642267.
4
Gauge fixing for sequence-function relationships.
PLoS Comput Biol. 2025 Mar 20;21(3):e1012818. doi: 10.1371/journal.pcbi.1012818. eCollection 2025.
5
6
Epistatic hotspots organize antibody fitness landscape and boost evolvability.
Proc Natl Acad Sci U S A. 2025 Jan 14;122(2):e2413884122. doi: 10.1073/pnas.2413884122. Epub 2025 Jan 8.
7
The highly rugged yet navigable regulatory landscape of the bacterial transcription factor TetR.
Nat Commun. 2024 Dec 30;15(1):10745. doi: 10.1038/s41467-024-54723-y.
8
Importance of higher-order epistasis in large protein sequence-function relationships.
bioRxiv. 2024 Sep 24:2024.09.22.614318. doi: 10.1101/2024.09.22.614318.
9
Environment-independent distribution of mutational effects emerges from microscopic epistasis.
Science. 2024 Oct 4;386(6717):87-92. doi: 10.1126/science.adn0753. Epub 2024 Oct 3.
10
Gauge fixing for sequence-function relationships.
bioRxiv. 2024 Jun 24:2024.05.12.593772. doi: 10.1101/2024.05.12.593772.

本文引用的文献

1
PERSPECTIVE: A CRITIQUE OF SEWALL WRIGHT'S SHIFTING BALANCE THEORY OF EVOLUTION.
Evolution. 1997 Jun;51(3):643-671. doi: 10.1111/j.1558-5646.1997.tb03650.x.
2
MOLECULAR EVOLUTION OVER THE MUTATIONAL LANDSCAPE.
Evolution. 1984 Sep;38(5):1116-1129. doi: 10.1111/j.1558-5646.1984.tb00380.x.
3
Adaptive Evolution: Don't Fix What's Broken.
Curr Biol. 2016 Feb 22;26(4):R169-71. doi: 10.1016/j.cub.2015.12.029.
4
Measuring epistasis in fitness landscapes: The correlation of fitness effects of mutations.
J Theor Biol. 2016 May 7;396:132-43. doi: 10.1016/j.jtbi.2016.01.037. Epub 2016 Feb 20.
5
Accelerating Mutational Load Is Not Due to Synergistic Epistasis or Mutator Alleles in Mutation Accumulation Lines of Yeast.
Genetics. 2016 Feb;202(2):751-63. doi: 10.1534/genetics.115.182774. Epub 2015 Nov 23.
6
A systematic survey of an intragenic epistatic landscape.
Mol Biol Evol. 2015 Jan;32(1):229-38. doi: 10.1093/molbev/msu301. Epub 2014 Nov 3.
7
Properties of selected mutations and genotypic landscapes under Fisher's geometric model.
Evolution. 2014 Dec;68(12):3537-54. doi: 10.1111/evo.12545. Epub 2014 Nov 17.
8
Adaptation in tunably rugged fitness landscapes: the rough Mount Fuji model.
Genetics. 2014 Oct;198(2):699-721. doi: 10.1534/genetics.114.167668. Epub 2014 Aug 13.
9
The fitness landscape of HIV-1 gag: advanced modeling approaches and validation of model predictions by in vitro testing.
PLoS Comput Biol. 2014 Aug 7;10(8):e1003776. doi: 10.1371/journal.pcbi.1003776. eCollection 2014 Aug.
10
Microbial evolution. Global epistasis makes adaptation predictable despite sequence-level stochasticity.
Science. 2014 Jun 27;344(6191):1519-1522. doi: 10.1126/science.1250939.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验