Suppr超能文献

死亡谷:相互作用的符号上位性在恒定的营养限制环境中限制了适应性轨迹。

The Valley-of-Death: reciprocal sign epistasis constrains adaptive trajectories in a constant, nutrient limiting environment.

作者信息

Chiotti Kami E, Kvitek Daniel J, Schmidt Karen H, Koniges Gregory, Schwartz Katja, Donckels Elizabeth A, Rosenzweig Frank, Sherlock Gavin

机构信息

Division of Biological Sciences, University of Montana, Missoula, MT, USA.

Department of Genetics, Stanford University, Stanford, CA 94305-5120, USA.

出版信息

Genomics. 2014 Dec;104(6 Pt A):431-7. doi: 10.1016/j.ygeno.2014.10.011. Epub 2014 Nov 1.

Abstract

The fitness landscape is a powerful metaphor for describing the relationship between genotype and phenotype for a population under selection. However, empirical data as to the topography of fitness landscapes are limited, owing to difficulties in measuring fitness for large numbers of genotypes under any condition. We previously reported a case of reciprocal sign epistasis (RSE), where two mutations individually increased yeast fitness in a glucose-limited environment, but reduced fitness when combined, suggesting the existence of two peaks on the fitness landscape. We sought to determine whether a ridge connected these peaks so that populations founded by one mutant could reach the peak created by the other, avoiding the low-fitness "Valley-of-Death" between them. Sequencing clones after 250 generations of further evolution provided no evidence for such a ridge, but did reveal many presumptive beneficial mutations, adding to a growing body of evidence that clonal interference pervades evolving microbial populations.

摘要

适应度景观是一种强大的隐喻,用于描述在选择作用下种群的基因型与表型之间的关系。然而,由于在任何条件下测量大量基因型的适应度都存在困难,关于适应度景观地形的实证数据有限。我们之前报道过一个相互符号上位性(RSE)的案例,其中两个突变在葡萄糖受限环境中单独增加了酵母的适应度,但组合在一起时却降低了适应度,这表明适应度景观上存在两个峰值。我们试图确定是否有一个山脊连接这些峰值,以便由一个突变体建立的种群能够到达由另一个突变体产生的峰值,避开它们之间低适应度的“死亡谷”。在进一步进化250代后对克隆进行测序,没有发现这种山脊存在的证据,但确实揭示了许多推测的有益突变,这进一步证明了克隆干扰在不断进化的微生物种群中普遍存在。

相似文献

1
The Valley-of-Death: reciprocal sign epistasis constrains adaptive trajectories in a constant, nutrient limiting environment.
Genomics. 2014 Dec;104(6 Pt A):431-7. doi: 10.1016/j.ygeno.2014.10.011. Epub 2014 Nov 1.
2
Reciprocal sign epistasis between frequently experimentally evolved adaptive mutations causes a rugged fitness landscape.
PLoS Genet. 2011 Apr;7(4):e1002056. doi: 10.1371/journal.pgen.1002056. Epub 2011 Apr 28.
3
On the (un)predictability of a large intragenic fitness landscape.
Proc Natl Acad Sci U S A. 2016 Dec 6;113(49):14085-14090. doi: 10.1073/pnas.1612676113. Epub 2016 Nov 18.
4
Molecular specificity, convergence and constraint shape adaptive evolution in nutrient-poor environments.
PLoS Genet. 2014 Jan;10(1):e1004041. doi: 10.1371/journal.pgen.1004041. Epub 2014 Jan 9.
5
A systematic survey of an intragenic epistatic landscape.
Mol Biol Evol. 2015 Jan;32(1):229-38. doi: 10.1093/molbev/msu301. Epub 2014 Nov 3.
6
The fitness landscape of a tRNA gene.
Science. 2016 May 13;352(6287):837-40. doi: 10.1126/science.aae0568. Epub 2016 Apr 14.
7
Selection biases the prevalence and type of epistasis along adaptive trajectories.
Evolution. 2013 Nov;67(11):3120-31. doi: 10.1111/evo.12192. Epub 2013 Jul 4.
8
Negative Epistasis in Experimental RNA Fitness Landscapes.
J Mol Evol. 2017 Dec;85(5-6):159-168. doi: 10.1007/s00239-017-9817-5. Epub 2017 Nov 10.
9
Exploring the effect of sex on empirical fitness landscapes.
Am Nat. 2009 Jul;174 Suppl 1:S15-30. doi: 10.1086/599081.
10
An experimental assay of the interactions of amino acids from orthologous sequences shaping a complex fitness landscape.
PLoS Genet. 2019 Apr 10;15(4):e1008079. doi: 10.1371/journal.pgen.1008079. eCollection 2019 Apr.

引用本文的文献

1
Highly parallelized laboratory evolution of wine yeasts for enhanced metabolic phenotypes.
Mol Syst Biol. 2024 Oct;20(10):1109-1133. doi: 10.1038/s44320-024-00059-0. Epub 2024 Aug 22.
3
Ensemble epistasis: thermodynamic origins of nonadditivity between mutations.
Genetics. 2021 Aug 26;219(1). doi: 10.1093/genetics/iyab105.
5
Genomic Background Governs Opposing Responses to Nalidixic Acid upon Megaplasmid Acquisition in .
mSphere. 2021 Feb 17;6(1):e00008-21. doi: 10.1128/mSphere.00008-21.
6
Every which way? On predicting tumor evolution using cancer progression models.
PLoS Comput Biol. 2019 Aug 2;15(8):e1007246. doi: 10.1371/journal.pcbi.1007246. eCollection 2019 Aug.
7
Cancer progression models and fitness landscapes: a many-to-many relationship.
Bioinformatics. 2018 Mar 1;34(5):836-844. doi: 10.1093/bioinformatics/btx663.
9
Heterozygote Advantage Is a Common Outcome of Adaptation in Saccharomyces cerevisiae.
Genetics. 2016 Jul;203(3):1401-13. doi: 10.1534/genetics.115.185165. Epub 2016 May 18.
10
Strong Selection Significantly Increases Epistatic Interactions in the Long-Term Evolution of a Protein.
PLoS Genet. 2016 Mar 30;12(3):e1005960. doi: 10.1371/journal.pgen.1005960. eCollection 2016 Mar.

本文引用的文献

1
RNA-seq of 272 gliomas revealed a novel, recurrent PTPRZ1-MET fusion transcript in secondary glioblastomas.
Genome Res. 2014 Nov;24(11):1765-73. doi: 10.1101/gr.165126.113. Epub 2014 Aug 18.
4
Transcription factor regulation and chromosome dynamics during pseudohyphal growth.
Mol Biol Cell. 2014 Sep 1;25(17):2669-76. doi: 10.1091/mbc.E14-04-0871. Epub 2014 Jul 9.
5
Microbial evolution. Global epistasis makes adaptation predictable despite sequence-level stochasticity.
Science. 2014 Jun 27;344(6191):1519-1522. doi: 10.1126/science.1250939.
6
Recombination accelerates adaptation on a large-scale empirical fitness landscape in HIV-1.
PLoS Genet. 2014 Jun 26;10(6):e1004439. doi: 10.1371/journal.pgen.1004439. eCollection 2014 Jun.
7
Fitness valleys constrain HIV-1's adaptation to its secondary chemokine coreceptor.
J Evol Biol. 2014 Mar;27(3):604-15. doi: 10.1111/jeb.12329. Epub 2014 Feb 3.
8
Understanding the mechanism of glucose-induced relief of Rgt1-mediated repression in yeast.
FEBS Open Bio. 2014 Jan 3;4:105-11. doi: 10.1016/j.fob.2013.12.004. eCollection 2014.
10
Genome duplication and mutations in ACE2 cause multicellular, fast-sedimenting phenotypes in evolved Saccharomyces cerevisiae.
Proc Natl Acad Sci U S A. 2013 Nov 5;110(45):E4223-31. doi: 10.1073/pnas.1305949110. Epub 2013 Oct 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验