Boiteux Serge, Coste Franck, Castaing Bertrand
Centre de Biophysique Moléculaire, CNRS, UPR4301, rue Charles Sadron, 45072 Orléans, France.
Centre de Biophysique Moléculaire, CNRS, UPR4301, rue Charles Sadron, 45072 Orléans, France.
Free Radic Biol Med. 2017 Jun;107:179-201. doi: 10.1016/j.freeradbiomed.2016.11.042. Epub 2016 Nov 27.
Oxidatively damaged DNA results from the attack of sugar and base moieties by reactive oxygen species (ROS), which are formed as byproducts of normal cell metabolism and during exposure to endogenous or exogenous chemical or physical agents. Guanine, having the lowest redox potential, is the DNA base the most susceptible to oxidation, yielding products such as 8-oxo-7,8-dihydroguanine (8-oxoG) and 2-6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG). In DNA, 8-oxoG was shown to be mutagenic yielding GC to TA transversions upon incorporation of dAMP opposite this lesion by replicative DNA polymerases. In prokaryotic and eukaryotic cells, 8-oxoG is primarily repaired by the base excision repair pathway (BER) initiated by a DNA N-glycosylase, Fpg and OGG1, respectively. In Escherichia coli, Fpg cooperates with MutY and MutT to prevent 8-oxoG-induced mutations, the "GO-repair system". In Saccharomyces cerevisiae, OGG1 cooperates with nucleotide excision repair (NER), mismatch repair (MMR), post-replication repair (PRR) and DNA polymerase η to prevent mutagenesis. Human and mouse cells mobilize all these pathways using OGG1, MUTYH (MutY-homolog also known as MYH), MTH1 (MutT-homolog also known as NUDT1), NER, MMR, NEILs and DNA polymerases η and λ, to prevent 8-oxoG-induced mutations. In fact, mice deficient in both OGG1 and MUTYH develop cancer in different organs at adult age, which points to the critical impact of 8-oxoG repair on genetic stability in mammals. In this review, we will focus on Fpg and OGG1 proteins, their biochemical and structural properties as well as their biological roles. Other DNA N-glycosylases able to release 8-oxoG from damaged DNA in various organisms will be discussed. Finally, we will report on the role of OGG1 in human disease and the possible use of 8-oxoG DNA N-glycosylases as therapeutic targets.
氧化损伤的DNA源于活性氧(ROS)对糖基和碱基部分的攻击,ROS是正常细胞代谢的副产物,在暴露于内源性或外源性化学或物理因子时也会形成。鸟嘌呤的氧化还原电位最低,是最易被氧化的DNA碱基,会产生8-氧代-7,8-二氢鸟嘌呤(8-氧代鸟嘌呤,8-oxoG)和2-6-二氨基-4-羟基-5-甲酰胺基嘧啶(FapyG)等产物。在DNA中,8-氧代鸟嘌呤具有致突变性,当复制性DNA聚合酶在该损伤位点对面掺入dAMP时,会导致GC到TA的颠换。在原核细胞和真核细胞中,8-氧代鸟嘌呤主要通过分别由DNA N-糖基化酶Fpg和OGG1启动的碱基切除修复途径(BER)进行修复。在大肠杆菌中,Fpg与MutY和MutT协同作用以防止8-氧代鸟嘌呤诱导的突变,即“GO修复系统”。在酿酒酵母中,OGG1与核苷酸切除修复(NER)、错配修复(MMR)、复制后修复(PRR)和DNA聚合酶η协同作用以防止诱变。人类和小鼠细胞利用OGG1、MUTYH(MutY同源物,也称为MYH)、MTH1(MutT同源物,也称为NUDT1)、NER、MMR、NEILs以及DNA聚合酶η和λ来调动所有这些途径,以防止8-氧代鸟嘌呤诱导的突变。事实上,同时缺乏OGG1和MUTYH的小鼠在成年后会在不同器官发生癌症,这表明8-氧代鸟嘌呤修复对哺乳动物遗传稳定性具有关键影响。在本综述中,我们将重点关注Fpg和OGG1蛋白、它们的生化和结构特性以及它们的生物学作用。还将讨论能够从各种生物体中受损DNA释放8-氧代鸟嘌呤的其他DNA N-糖基化酶。最后,我们将报告OGG1在人类疾病中的作用以及8-氧代鸟嘌呤DNA N-糖基化酶作为治疗靶点的可能用途。