Suppr超能文献

通过地质时间模拟行星氮:对行星气候和大气生物特征的影响。

Modeling pN through Geological Time: Implications for Planetary Climates and Atmospheric Biosignatures.

作者信息

Stüeken E E, Kipp M A, Koehler M C, Schwieterman E W, Johnson B, Buick R

机构信息

1 Department of Earth and Space Sciences and Astrobiology Program, University of Washington , Seattle, Washington, USA .

2 Department of Earth Sciences, University of California , Riverside, California, USA .

出版信息

Astrobiology. 2016 Dec;16(12):949-963. doi: 10.1089/ast.2016.1537. Epub 2016 Dec 1.

Abstract

Nitrogen is a major nutrient for all life on Earth and could plausibly play a similar role in extraterrestrial biospheres. The major reservoir of nitrogen at Earth's surface is atmospheric N, but recent studies have proposed that the size of this reservoir may have fluctuated significantly over the course of Earth's history with particularly low levels in the Neoarchean-presumably as a result of biological activity. We used a biogeochemical box model to test which conditions are necessary to cause large swings in atmospheric N pressure. Parameters for our model are constrained by observations of modern Earth and reconstructions of biomass burial and oxidative weathering in deep time. A 1-D climate model was used to model potential effects on atmospheric climate. In a second set of tests, we perturbed our box model to investigate which parameters have the greatest impact on the evolution of atmospheric pN and consider possible implications for nitrogen cycling on other planets. Our results suggest that (a) a high rate of biomass burial would have been needed in the Archean to draw down atmospheric pN to less than half modern levels, (b) the resulting effect on temperature could probably have been compensated by increasing solar luminosity and a mild increase in pCO, and (c) atmospheric oxygenation could have initiated a stepwise pN rebound through oxidative weathering. In general, life appears to be necessary for significant atmospheric pN swings on Earth-like planets. Our results further support the idea that an exoplanetary atmosphere rich in both N and O is a signature of an oxygen-producing biosphere. Key Words: Biosignatures-Early Earth-Planetary atmospheres. Astrobiology 16, 949-963.

摘要

氮是地球上所有生命的主要养分,在外星生物圈中也可能发挥类似作用。地球表面氮的主要储存库是大气中的氮,但最近的研究表明,在地球历史进程中,这个储存库的规模可能发生了显著波动,在新太古代时期尤其低,这可能是生物活动的结果。我们使用了一个生物地球化学箱式模型来测试哪些条件会导致大气氮压力大幅波动。我们模型的参数受到现代地球观测以及对深层时间生物量埋藏和氧化风化的重建的限制。使用一维气候模型来模拟对大气气候的潜在影响。在第二组测试中,我们对箱式模型进行扰动,以研究哪些参数对大气pN的演化影响最大,并考虑对其他行星氮循环的可能影响。我们的结果表明:(a)在太古宙时期,需要高生物量埋藏速率才能将大气pN降至现代水平的一半以下;(b)由此对温度产生的影响可能通过增加太阳光度和pCO₂的适度增加得到补偿;(c)大气氧化可能通过氧化风化引发pN的逐步反弹。一般来说,生命似乎是类地行星大气pN大幅波动所必需的。我们的结果进一步支持了这样一种观点,即富含氮和氧的系外行星大气是产氧生物圈的标志。关键词:生物特征——早期地球——行星大气。天体生物学16,949 - 963。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验