Suppr超能文献

有人居住还是无人居住?外星生命可能的化学特征解读中的陷阱。

Inhabited or Uninhabited? Pitfalls in the Interpretation of Possible Chemical Signatures of Extraterrestrial Life.

作者信息

Fox Stefan, Strasdeit Henry

机构信息

Department of Bioinorganic Chemistry, Institute of Chemistry, University of HohenheimStuttgart, Germany.

出版信息

Front Microbiol. 2017 Aug 25;8:1622. doi: 10.3389/fmicb.2017.01622. eCollection 2017.

Abstract

The "Rare Earth" hypothesis-put forward by Ward and Brownlee in their 2000 book of the same title-states that prokaryote-type organisms may be common in the universe but animals and higher plants are exceedingly rare. If this idea is correct, the search for extraterrestrial life is essentially the search for microorganisms. Various indicators may be used to detect extant or extinct microbial life beyond Earth. Among them are chemical biosignatures, such as biomolecules and stable isotope ratios. The present minireview focuses on the major problems associated with the identification of chemical biosignatures. Two main types of misinterpretation are distinguished, namely false positive and false negative results. The former can be caused by terrestrial biogenic contaminants or by abiotic products. Terrestrial contamination is a common problem in space missions that search for biosignatures on other planets and moons. Abiotic organics can lead to false positive results if erroneously interpreted as biomolecules, but also to false negatives, for example when an abiotic source obscures a less productive biological one. In principle, all types of putative chemical biosignatures are prone to misinterpretation. Some, however, are more reliable ("stronger") than others. These include: (i) homochiral polymers of defined length and sequence, comparable to proteins and polynucleotides; (ii) enantiopure compounds; (iii) the existence of only a subset of molecules when abiotic syntheses would produce a continuous range of molecules; the proteinogenic amino acids constitute such a subset. These considerations are particularly important for life detection missions to solar system bodies such as Mars, Europa, and Enceladus.

摘要

“稀土”假说由沃德和布朗利在其2000年出版的同名书籍中提出,该假说认为原核生物类型的有机体在宇宙中可能很常见,但动物和高等植物却极其罕见。如果这一观点正确,那么寻找外星生命本质上就是寻找微生物。可以使用各种指标来检测地球以外现存或已灭绝的微生物生命。其中包括化学生物特征,如生物分子和稳定同位素比率。本微型综述聚焦于与化学生物特征识别相关的主要问题。区分出两种主要的错误解读类型,即假阳性和假阴性结果。前者可能由地球生物源污染物或非生物产物导致。在其他行星和卫星上寻找生物特征的太空任务中,地球污染是一个常见问题。如果将非生物有机物错误地解读为生物分子,就会导致假阳性结果,但也会导致假阴性结果,例如当一个非生物来源掩盖了一个产量较低的生物来源时。原则上,所有类型的假定化学生物特征都容易出现错误解读。然而,有些比其他的更可靠(“更强”)。这些包括:(i)具有确定长度和序列的同手性聚合物,类似于蛋白质和多核苷酸;(ii)对映体纯化合物;(iii)当非生物合成会产生一系列连续分子时,仅存在分子的一个子集;蛋白质原氨基酸就构成这样一个子集。这些考虑因素对于前往火星、木卫二和土卫二等同太阳系天体的生命探测任务尤为重要。

相似文献

1
Inhabited or Uninhabited? Pitfalls in the Interpretation of Possible Chemical Signatures of Extraterrestrial Life.
Front Microbiol. 2017 Aug 25;8:1622. doi: 10.3389/fmicb.2017.01622. eCollection 2017.
2
Planning Implications Related to Sterilization-Sensitive Science Investigations Associated with Mars Sample Return (MSR).
Astrobiology. 2022 Jun;22(S1):S112-S164. doi: 10.1089/AST.2021.0113. Epub 2022 May 19.
3
Spectroscopic Detection of Biosignatures in Natural Ice Samples as a Proxy for Icy Moons.
Life (Basel). 2023 Feb 9;13(2):478. doi: 10.3390/life13020478.
5
Solid-State Single-Molecule Sensing with the Electronic Life-Detection Instrument for Enceladus/Europa (ELIE).
Astrobiology. 2023 Oct;23(10):1056-1070. doi: 10.1089/ast.2022.0119. Epub 2023 Sep 29.
6
Discriminating Abiotic and Biotic Fingerprints of Amino Acids and Fatty Acids in Ice Grains Relevant to Ocean Worlds.
Astrobiology. 2020 Oct;20(10):1168-1184. doi: 10.1089/ast.2019.2188. Epub 2020 Jun 3.
7
Chapter 8: Searching for Life Beyond Earth.
Astrobiology. 2024 Mar;24(S1):S164-S185. doi: 10.1089/ast.2021.0104.
8
Color Catalogue of Life in Ice: Surface Biosignatures on Icy Worlds.
Astrobiology. 2022 Mar;22(3):313-321. doi: 10.1089/ast.2021.0008. Epub 2021 Dec 29.
9
Morphological biosignatures and the search for life on Mars.
Astrobiology. 2003 Summer;3(2):351-68. doi: 10.1089/153110703769016442.
10
Detection of Organic Matter and Biosignatures in Space Missions.
Curr Issues Mol Biol. 2020;38:53-74. doi: 10.21775/cimb.038.053. Epub 2020 Jan 22.

引用本文的文献

1
Chemical, Thermal, and Radiation Resistance of an Iron Porphyrin: A Model Study of Biosignature Stability.
Astrobiology. 2022 Jul;22(7):776-799. doi: 10.1089/ast.2021.0144. Epub 2022 May 31.
3
Deciphering Biosignatures in Planetary Contexts.
Astrobiology. 2019 Sep;19(9):1075-1102. doi: 10.1089/ast.2018.1903. Epub 2019 Jul 22.
4
A Possible Prebiotic Ancestry of Porphyrin-Type Protein Cofactors.
Orig Life Evol Biosph. 2018 Dec;48(4):347-371. doi: 10.1007/s11084-018-9567-4. Epub 2018 Dec 13.

本文引用的文献

2
Expansion for the Brachylophosaurus canadensis Collagen I Sequence and Additional Evidence of the Preservation of Cretaceous Protein.
J Proteome Res. 2017 Feb 3;16(2):920-932. doi: 10.1021/acs.jproteome.6b00873. Epub 2017 Jan 23.
3
The sluggish speed of making abiotic methane.
Proc Natl Acad Sci U S A. 2016 Dec 6;113(49):13944-13946. doi: 10.1073/pnas.1617103113. Epub 2016 Nov 28.
4
Modeling pN through Geological Time: Implications for Planetary Climates and Atmospheric Biosignatures.
Astrobiology. 2016 Dec;16(12):949-963. doi: 10.1089/ast.2016.1537. Epub 2016 Dec 1.
5
Hypercondensation of an amino acid: synthesis and characterization of a black glycine polymer.
Chemistry. 2015 Jun 8;21(24):8897-904. doi: 10.1002/chem.201500820. Epub 2015 May 1.
6
Ongoing hydrothermal activities within Enceladus.
Nature. 2015 Mar 12;519(7542):207-10. doi: 10.1038/nature14262.
7
Detecting nanoscale vibrations as signature of life.
Proc Natl Acad Sci U S A. 2015 Jan 13;112(2):378-81. doi: 10.1073/pnas.1415348112. Epub 2014 Dec 29.
9
Lipids as universal biomarkers of extraterrestrial life.
Astrobiology. 2014 Jun;14(6):541-9. doi: 10.1089/ast.2013.1134. Epub 2014 Apr 15.
10
Biochemistry. Unlocking ancient protein palimpsests.
Science. 2014 Mar 21;343(6177):1320-2. doi: 10.1126/science.1249274.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验