Sloan Daniel B, Havird Justin C, Sharbrough Joel
Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA.
Mol Ecol. 2017 Apr;26(8):2212-2236. doi: 10.1111/mec.13959. Epub 2017 Jan 27.
The study of reproductive isolation and species barriers frequently focuses on mitochondrial genomes and has produced two alternative and almost diametrically opposed narratives. On one hand, mtDNA may be at the forefront of speciation events, with co-evolved mitonuclear interactions responsible for some of the earliest genetic incompatibilities arising among isolated populations. On the other hand, there are numerous cases of introgression of mtDNA across species boundaries even when nuclear gene flow is restricted. We argue that these seemingly contradictory patterns can result from a single underlying cause. Specifically, the accumulation of deleterious mutations in mtDNA creates a problem with two alternative evolutionary solutions. In some cases, compensatory or epistatic changes in the nuclear genome may ameliorate the effects of mitochondrial mutations, thereby establishing coadapted mitonuclear genotypes within populations and forming the basis of reproductive incompatibilities between populations. Alternatively, populations with high mitochondrial mutation loads may be rescued by replacement with a more fit, foreign mitochondrial haplotype. Coupled with many nonadaptive mechanisms of introgression that can preferentially affect cytoplasmic genomes, this form of adaptive introgression may contribute to the widespread discordance between mitochondrial and nuclear genealogies. Here, we review recent advances related to mitochondrial introgression and mitonuclear incompatibilities, including the potential for cointrogression of mtDNA and interacting nuclear genes. We also address an emerging controversy over the classic assumption that selection on mitochondrial genomes is inefficient and discuss the mechanisms that lead lineages down alternative evolutionary paths in response to mitochondrial mutation accumulation.
对生殖隔离和物种屏障的研究常常聚焦于线粒体基因组,并且产生了两种截然不同且几乎完全相反的观点。一方面,线粒体DNA(mtDNA)可能处于物种形成事件的前沿,共同进化的线粒体-核相互作用导致了隔离种群中最早出现的一些遗传不兼容性。另一方面,即使核基因流动受到限制,也存在许多mtDNA跨物种边界渗入的情况。我们认为,这些看似矛盾的模式可能源于一个共同的潜在原因。具体而言,mtDNA中有害突变的积累产生了一个问题,有两种不同的进化解决方案。在某些情况下,核基因组中的补偿性或上位性变化可能会减轻线粒体突变的影响,从而在种群中建立共同适应的线粒体-核基因型,并形成种群间生殖不兼容性的基础。或者,线粒体突变负荷高的种群可能会通过替换为更合适的外来线粒体单倍型而得到拯救。再加上许多可以优先影响细胞质基因组的非适应性渗入机制,这种形式的适应性渗入可能导致线粒体和核基因谱系之间广泛的不一致。在这里,我们回顾了与线粒体渗入和线粒体-核不相容性相关的最新进展,包括mtDNA和相互作用的核基因共同渗入的可能性。我们还讨论了一个关于线粒体基因组选择效率低下这一经典假设的新争议,并探讨了导致谱系因线粒体突变积累而走上不同进化路径的机制。