Suppr超能文献

MLL4蛋白稳定性需要H3K4甲基转移酶活性。

H3K4 Methyltransferase Activity Is Required for MLL4 Protein Stability.

作者信息

Jang Younghoon, Wang Chaochen, Zhuang Lenan, Liu Chengyu, Ge Kai

机构信息

Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA.

Transgenic Core, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA.

出版信息

J Mol Biol. 2017 Jun 30;429(13):2046-2054. doi: 10.1016/j.jmb.2016.12.016. Epub 2016 Dec 21.

Abstract

Transcriptional enhancers play a key role in cell type-specific gene expression and cell fate transition. Enhancers are marked by histone H3K4 mono- and di-methylation (H3K4me1/2). The tumor suppressor MLL4 (KMT2D) is a major enhancer H3K4 mono- and di-methyltransferase with a partial functional redundancy with MLL3 (KMT2C). However, the functional role of MLL4 enzymatic activity remains elusive. To address this issue, we have generated MLL4 enzyme-dead knock-in (KI) embryonic stem (ES) cells and mice, which carry Y5477A/Y5523A/Y5563A mutations in the enzymatic SET domain of the MLL4 protein. Homozygous MLL4 enzyme-dead KI (Mll4) mice are embryonic lethal and die around E10.5, which phenocopies Mll4 knockout mice. Interestingly, enzyme-dead MLL4 protein in ES cells is highly unstable. Like Mll4 knockout ES cells, Mll4 ES cells show reduced levels of H3K4me1/2. Furthermore, we show that ectopic expression of histone H3.3 lysine 4-to-methionine (K4M) mutant, which reduces endogenous H3K4 methylation levels in ES cells, decreases the protein stability of MLL3 and MLL4 but not that of H3K4 methyltransferases SET1A (KMT2F) and SET1B (KMT2G). Taken together, our findings indicate that MLL4 protein stability is tightly regulated by its H3K4 methyltransferase activity.

摘要

转录增强子在细胞类型特异性基因表达和细胞命运转变中起关键作用。增强子以组蛋白H3K4单甲基化和二甲基化(H3K4me1/2)为标志。肿瘤抑制因子MLL4(KMT2D)是一种主要的增强子H3K4单甲基化和二甲基转移酶,与MLL3(KMT2C)具有部分功能冗余。然而,MLL4酶活性的功能作用仍不清楚。为了解决这个问题,我们构建了MLL4酶失活的敲入(KI)胚胎干细胞和小鼠,它们在MLL4蛋白的酶促SET结构域中携带Y5477A/Y5523A/Y5563A突变。纯合的MLL4酶失活KI(Mll4)小鼠胚胎致死,在大约E10.5时死亡,这与Mll4基因敲除小鼠的表型相似。有趣的是,胚胎干细胞中酶失活的MLL4蛋白高度不稳定。与Mll4基因敲除的胚胎干细胞一样,Mll4胚胎干细胞显示H3K4me1/2水平降低。此外,我们发现组蛋白H3.3赖氨酸4突变为甲硫氨酸(K4M)的突变体异位表达会降低胚胎干细胞中的内源性H3K4甲基化水平,降低MLL3和MLL4的蛋白质稳定性,但不会降低H3K4甲基转移酶SET1A(KMT2F)和SET1B(KMT2G)的蛋白质稳定性。综上所述,我们的研究结果表明,MLL4蛋白稳定性受其H3K4甲基转移酶活性的严格调控。

相似文献

1
H3K4 Methyltransferase Activity Is Required for MLL4 Protein Stability.
J Mol Biol. 2017 Jun 30;429(13):2046-2054. doi: 10.1016/j.jmb.2016.12.016. Epub 2016 Dec 21.
2
H3.3K4M destabilizes enhancer H3K4 methyltransferases MLL3/MLL4 and impairs adipose tissue development.
Nucleic Acids Res. 2019 Jan 25;47(2):607-620. doi: 10.1093/nar/gky982.
3
Enhancer priming by H3K4 methyltransferase MLL4 controls cell fate transition.
Proc Natl Acad Sci U S A. 2016 Oct 18;113(42):11871-11876. doi: 10.1073/pnas.1606857113. Epub 2016 Oct 3.
5
The MLL3/MLL4 branches of the COMPASS family function as major histone H3K4 monomethylases at enhancers.
Mol Cell Biol. 2013 Dec;33(23):4745-54. doi: 10.1128/MCB.01181-13. Epub 2013 Sep 30.
6
Distinct kinetic mechanisms of H3K4 methylation catalyzed by MLL3 and MLL4 core complexes.
J Biol Chem. 2021 Jan-Jun;296:100635. doi: 10.1016/j.jbc.2021.100635. Epub 2021 Apr 3.
7
Mll3 and Mll4 Facilitate Enhancer RNA Synthesis and Transcription from Promoters Independently of H3K4 Monomethylation.
Mol Cell. 2017 May 18;66(4):568-576.e4. doi: 10.1016/j.molcel.2017.04.018. Epub 2017 May 5.
8
Histone H3 lysine 4 methyltransferase KMT2D.
Gene. 2017 Sep 5;627:337-342. doi: 10.1016/j.gene.2017.06.056. Epub 2017 Jun 29.
9
The MLL3/4 H3K4 methyltransferase complex in establishing an active enhancer landscape.
Biochem Soc Trans. 2021 Jun 30;49(3):1041-1054. doi: 10.1042/BST20191164.

引用本文的文献

1
Coding Variants of the Genitourinary Development Gene Carry High Risk for Prostate Cancer.
JCO Precis Oncol. 2025 Jan;9:e2400569. doi: 10.1200/PO-24-00569. Epub 2025 Jan 28.
2
Functional Roles of H3K4 Methylation in Transcriptional Regulation.
Mol Cell Biol. 2024;44(11):505-515. doi: 10.1080/10985549.2024.2388254. Epub 2024 Aug 18.
3
Growth deficiency in a mouse model of Kabuki syndrome 2 bears mechanistic similarities to Kabuki syndrome 1.
PLoS Genet. 2024 Jun 10;20(6):e1011310. doi: 10.1371/journal.pgen.1011310. eCollection 2024 Jun.
4
Sexual dimorphism in bladder cancer: a review of etiology, biology, diagnosis, and outcomes.
Front Pharmacol. 2024 Jan 12;14:1326627. doi: 10.3389/fphar.2023.1326627. eCollection 2023.
5
Role of H3K4 monomethylation in gene regulation.
Curr Opin Genet Dev. 2024 Feb;84:102153. doi: 10.1016/j.gde.2024.102153. Epub 2024 Jan 26.
6
KMT2 Family of H3K4 Methyltransferases: Enzymatic Activity-dependent and -independent Functions.
J Mol Biol. 2024 Apr 1;436(7):168453. doi: 10.1016/j.jmb.2024.168453. Epub 2024 Jan 22.
7
Somatic mutations of MLL4/COMPASS induce cytoplasmic localization providing molecular insight into cancer prognosis and treatment.
Proc Natl Acad Sci U S A. 2023 Dec 26;120(52):e2310063120. doi: 10.1073/pnas.2310063120. Epub 2023 Dec 19.

本文引用的文献

1
Enhancer priming by H3K4 methyltransferase MLL4 controls cell fate transition.
Proc Natl Acad Sci U S A. 2016 Oct 18;113(42):11871-11876. doi: 10.1073/pnas.1606857113. Epub 2016 Oct 3.
2
KMT2D regulates specific programs in heart development via histone H3 lysine 4 di-methylation.
Development. 2016 Mar 1;143(5):810-21. doi: 10.1242/dev.132688.
3
Structural basis for activity regulation of MLL family methyltransferases.
Nature. 2016 Feb 25;530(7591):447-52. doi: 10.1038/nature16952. Epub 2016 Feb 17.
4
Disruption of KMT2D perturbs germinal center B cell development and promotes lymphomagenesis.
Nat Med. 2015 Oct;21(10):1190-8. doi: 10.1038/nm.3940. Epub 2015 Sep 14.
5
Biochemical reconstitution and phylogenetic comparison of human SET1 family core complexes involved in histone methylation.
J Biol Chem. 2015 Mar 6;290(10):6361-75. doi: 10.1074/jbc.M114.627646. Epub 2015 Jan 5.
6
Feedback control of Set1 protein levels is important for proper H3K4 methylation patterns.
Cell Rep. 2014 Mar 27;6(6):961-972. doi: 10.1016/j.celrep.2014.02.017. Epub 2014 Mar 6.
9
Inhibition of PRC2 activity by a gain-of-function H3 mutation found in pediatric glioblastoma.
Science. 2013 May 17;340(6134):857-61. doi: 10.1126/science.1232245. Epub 2013 Mar 28.
10
UTX regulates mesoderm differentiation of embryonic stem cells independent of H3K27 demethylase activity.
Proc Natl Acad Sci U S A. 2012 Sep 18;109(38):15324-9. doi: 10.1073/pnas.1204166109. Epub 2012 Sep 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验