Mukunda Chinmayee L, Narayanan Rishikesh
Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India.
J Physiol. 2017 Apr 15;595(8):2611-2637. doi: 10.1113/JP273482. Epub 2017 Feb 1.
We develop a new biophysically rooted, physiologically constrained conductance-based synaptic model to mechanistically account for short-term facilitation and depression, respectively through residual calcium and transmitter depletion kinetics. We address the specific question of how presynaptic components (including voltage-gated ion channels, pumps, buffers and release-handling mechanisms) and interactions among them define synaptic filtering and short-term plasticity profiles. Employing global sensitivity analyses (GSAs), we show that near-identical synaptic filters and short-term plasticity profiles could emerge from disparate presynaptic parametric combinations with weak pairwise correlations. Using virtual knockout models, a technique to address the question of channel-specific contributions within the GSA framework, we unveil the differential and variable impact of each ion channel on synaptic physiology. Our conclusions strengthen the argument that parametric and interactional complexity in biological systems should not be viewed from the limited curse-of-dimensionality standpoint, but from the evolutionarily advantageous perspective of providing functional robustness through degeneracy.
Information processing in neurons is known to emerge as a gestalt of pre- and post-synaptic filtering. However, the impact of presynaptic mechanisms on synaptic filters has not been quantitatively assessed. Here, we developed a biophysically rooted, conductance-based model synapse that was endowed with six different voltage-gated ion channels, calcium pumps, calcium buffer and neurotransmitter-replenishment mechanisms in the presynaptic terminal. We tuned our model to match the short-term plasticity profile and band-pass structure of Schaffer collateral synapses, and performed sensitivity analyses to demonstrate that presynaptic voltage-gated ion channels regulated synaptic filters through changes in excitability and associated calcium influx. These sensitivity analyses also revealed that calcium- and release-control mechanisms were effective regulators of synaptic filters, but accomplished this without changes in terminal excitability or calcium influx. Next, to perform global sensitivity analysis, we generated 7000 randomized models spanning 15 presynaptic parameters, and computed eight different physiological measurements in each of these models. We validated these models by applying experimentally obtained bounds on their measurements, and found 104 (∼1.5%) models to match the validation criteria for all eight measurements. Analysing these valid models, we demonstrate that analogous synaptic filters emerge from disparate combinations of presynaptic parameters exhibiting weak pairwise correlations. Finally, using virtual knockout models, we establish the variable and differential impact of different presynaptic channels on synaptic filters, underlining the critical importance of interactions among different presynaptic components in defining synaptic physiology. Our results have significant implications for protein-localization strategies required for physiological robustness and for degeneracy in long-term synaptic plasticity profiles.
我们开发了一种基于生物物理且受生理约束的电导型突触新模型,分别通过残余钙和递质耗竭动力学,从机制上解释短期易化和抑制现象。我们探讨了一个具体问题,即突触前成分(包括电压门控离子通道、泵、缓冲剂和递质释放处理机制)及其之间的相互作用如何定义突触滤波和短期可塑性特征。通过全局敏感性分析(GSA),我们表明,不同的突触前参数组合且成对相关性较弱时,可能会出现近乎相同的突触滤波器和短期可塑性特征。使用虚拟敲除模型(一种在GSA框架内解决通道特异性贡献问题的技术),我们揭示了每个离子通道对突触生理学的不同且可变的影响。我们的结论强化了这样一个观点,即生物系统中的参数和相互作用复杂性不应从有限的维度诅咒角度来看待,而应从通过简并提供功能稳健性这一进化优势的角度来看待。
已知神经元中的信息处理是突触前和突触后滤波的整体结果。然而,突触前机制对突触滤波器的影响尚未得到定量评估。在这里,我们开发了一种基于生物物理的电导型模型突触,该突触在突触前终末配备了六种不同的电压门控离子通道、钙泵、钙缓冲剂和神经递质补充机制。我们调整模型以匹配谢弗侧支突触的短期可塑性特征和带通结构,并进行敏感性分析以证明突触前电压门控离子通道通过兴奋性变化和相关钙内流来调节突触滤波器。这些敏感性分析还表明,钙和释放控制机制是突触滤波器的有效调节因子,但在不改变终末兴奋性或钙内流的情况下实现了这一点。接下来,为了进行全局敏感性分析,我们生成了7000个跨越15个突触前参数的随机模型,并计算了每个模型中的八种不同生理测量值。我们通过对测量值应用实验获得的界限来验证这些模型,发现有104个(约1.5%)模型符合所有八项测量的验证标准。通过分析这些有效模型,我们证明了不同的突触前参数组合(成对相关性较弱)会产生类似的突触滤波器。最后,使用虚拟敲除模型,我们确定了不同突触前通道对突触滤波器的可变且不同的影响,强调了不同突触前成分之间的相互作用在定义突触生理学方面的关键重要性。我们的结果对生理稳健性所需的蛋白质定位策略以及长期突触可塑性特征中的简并性具有重要意义。