Rodionova Irina A, Vetting Matthew W, Li Xiaoqing, Almo Steven C, Osterman Andrei L, Rodionov Dmitry A
Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
Nucleic Acids Res. 2017 Apr 20;45(7):3785-3799. doi: 10.1093/nar/gkw1331.
Riboflavin (vitamin B2) is the precursor of flavin mononucleotide (FMN) and flavin adenine dinucleotide, which are essential coenzymes in all free-living organisms. Riboflavin biosynthesis in many Bacteria but not in Archaea is controlled by FMN-responsive riboswitches. We identified a novel bifunctional riboflavin kinase/regulator (RbkR), which controls riboflavin biosynthesis and transport genes in major lineages of Crenarchaeota, Euryarchaeota and Thaumarchaeota. RbkR proteins are composed of the riboflavin kinase domain and a DNA-binding winged helix-turn-helix-like domain. Using comparative genomics, we predicted RbkR operator sites and reconstructed RbkR regulons in 94 archaeal genomes. While the identified RbkR operators showed significant variability between archaeal lineages, the conserved core of RbkR regulons includes riboflavin biosynthesis genes, known/predicted vitamin uptake transporters and the rbkR gene. The DNA motifs and CTP-dependent riboflavin kinase activity of two RbkR proteins were experimentally validated in vitro. The DNA binding activity of RbkR was stimulated by CTP and suppressed by FMN, a product of riboflavin kinase. The crystallographic structure of RbkR from Thermoplasma acidophilum was determined in complex with CTP and its DNA operator revealing key residues for operator and ligand recognition. Overall, this study contributes to our understanding of metabolic and regulatory networks for vitamin homeostasis in Archaea.
核黄素(维生素B2)是黄素单核苷酸(FMN)和黄素腺嘌呤二核苷酸的前体,而这两种物质是所有自由生活生物体中必不可少的辅酶。许多细菌而非古菌中的核黄素生物合成受FMN响应核糖开关的控制。我们鉴定出一种新型双功能核黄素激酶/调节因子(RbkR),它控制着泉古菌门、广古菌门和奇古菌门主要谱系中的核黄素生物合成和转运基因。RbkR蛋白由核黄素激酶结构域和一个DNA结合翼状螺旋-转角-螺旋样结构域组成。通过比较基因组学,我们预测了RbkR操纵位点,并在94个古菌基因组中重建了RbkR调控子。虽然鉴定出的RbkR操纵位点在古菌谱系之间存在显著差异,但RbkR调控子的保守核心包括核黄素生物合成基因、已知/预测的维生素摄取转运蛋白和rbkR基因。两种RbkR蛋白的DNA基序和CTP依赖性核黄素激酶活性在体外得到了实验验证。RbkR的DNA结合活性受CTP刺激,并被核黄素激酶的产物FMN抑制。测定了嗜热栖热菌RbkR与CTP及其DNA操纵序列复合物的晶体结构,揭示了识别操纵序列和配体的关键残基。总体而言,这项研究有助于我们理解古菌中维生素稳态的代谢和调控网络。