Suppr超能文献

一种机会致病性真菌的次生代谢产物库

Secondary metabolite arsenal of an opportunistic pathogenic fungus.

作者信息

Bignell Elaine, Cairns Timothy C, Throckmorton Kurt, Nierman William C, Keller Nancy P

机构信息

Manchester Fungal Infection Group, Institute of Inflammation and Repair, 2.24 Core Technology Facility, Grafton Street, Manchester, M13 9NT, UK.

Department of Applied and Molecular Microbiology, Institute of Biotechnology, Berlin University of Technology, Gustav-Meyer-Allee 25, 13355 Berlin, Germany.

出版信息

Philos Trans R Soc Lond B Biol Sci. 2016 Dec 5;371(1709). doi: 10.1098/rstb.2016.0023.

Abstract

Aspergillus fumigatus is a versatile fungus able to successfully exploit diverse environments from mammalian lungs to agricultural waste products. Among its many fitness attributes are dozens of genetic loci containing biosynthetic gene clusters (BGCs) producing bioactive small molecules (often referred to as secondary metabolites or natural products) that provide growth advantages to the fungus dependent on environment. Here we summarize the current knowledge of these BGCs-18 of which can be named to product-their expression profiles in vivo, and which BGCs may enhance virulence of this opportunistic human pathogen. Furthermore, we find extensive evidence for the presence of many of these BGCs, or similar BGCs, in distantly related genera including the emerging pathogen Pseudogymnoascus destructans, the causative agent of white-nose syndrome in bats, and suggest such BGCs may be predictive of pathogenic potential in other fungi.This article is part of the themed issue 'Tackling emerging fungal threats to animal health, food security and ecosystem resilience'.

摘要

烟曲霉是一种适应性很强的真菌,能够成功地在从哺乳动物肺部到农业废弃物等各种环境中生存。它众多的适应性特征包括几十个含有生物合成基因簇(BGCs)的基因位点,这些基因簇能产生生物活性小分子(通常称为次级代谢产物或天然产物),这些小分子根据环境为真菌提供生长优势。在这里,我们总结了目前对这些BGCs的了解——其中18个可以根据产物命名——它们在体内的表达谱,以及哪些BGCs可能增强这种机会性人类病原体的毒力。此外,我们发现有大量证据表明,在包括新出现的病原体——蝙蝠白鼻综合征的病原体毁灭拟裸球壳菌在内的远缘属中,存在许多这些BGCs或类似的BGCs,并表明此类BGCs可能预示着其他真菌的致病潜力。本文是主题为“应对真菌对动物健康、食品安全和生态系统恢复力的新威胁”的特刊的一部分。

相似文献

1
Secondary metabolite arsenal of an opportunistic pathogenic fungus.
Philos Trans R Soc Lond B Biol Sci. 2016 Dec 5;371(1709). doi: 10.1098/rstb.2016.0023.
4
Fungal Isocyanide Synthases and Xanthocillin Biosynthesis in Aspergillus fumigatus.
mBio. 2018 May 29;9(3):e00785-18. doi: 10.1128/mBio.00785-18.
5
Gene regulatory network resource aids in predicting trans-acting regulators of biosynthetic gene clusters in .
mBio. 2025 Mar 12;16(3):e0387424. doi: 10.1128/mbio.03874-24. Epub 2025 Feb 18.
6
The Gene Is Required for the Growth and Virulence of the Human Pathogenic Fungus Aspergillus fumigatus.
Microbiol Spectr. 2022 Feb 23;10(1):e0155821. doi: 10.1128/spectrum.01558-21. Epub 2022 Feb 2.
7
Aspergillus fumigatus Acetate Utilization Impacts Virulence Traits and Pathogenicity.
mBio. 2021 Aug 31;12(4):e0168221. doi: 10.1128/mBio.01682-21. Epub 2021 Jul 27.
8
Transcription Factor Repurposing Offers Insights into Evolution of Biosynthetic Gene Cluster Regulation.
mBio. 2021 Aug 31;12(4):e0139921. doi: 10.1128/mBio.01399-21. Epub 2021 Jul 20.
9
Metal-homeostasis in the pathobiology of the opportunistic human fungal pathogen Aspergillus fumigatus.
Curr Opin Microbiol. 2017 Dec;40:152-159. doi: 10.1016/j.mib.2017.11.015. Epub 2017 Nov 24.

引用本文的文献

1
Giant transposons promote strain heterogeneity in a major fungal pathogen.
mBio. 2025 Jun 11;16(6):e0109225. doi: 10.1128/mbio.01092-25. Epub 2025 May 12.
2
Antimicrobial Agent Trimethoprim Influences Chemical Interactions in Cystic Fibrosis Pathogens via the Gene Cluster.
ACS Chem Biol. 2025 Jun 20;20(6):1153-1170. doi: 10.1021/acschembio.4c00562. Epub 2025 May 9.
3
Progress in the Study of Natural Antimicrobial Active Substances in .
Molecules. 2024 Sep 16;29(18):4400. doi: 10.3390/molecules29184400.
5
The airway mycobiome and interactions with immunity in health and chronic lung disease.
Oxf Open Immunol. 2024 Aug 22;5(1):iqae009. doi: 10.1093/oxfimm/iqae009. eCollection 2024.
6
Giant transposons promote strain heterogeneity in a major fungal pathogen.
bioRxiv. 2024 Oct 8:2024.06.28.601215. doi: 10.1101/2024.06.28.601215.
7
Strain heterogeneity in a non-pathogenic fungus highlights factors contributing to virulence.
bioRxiv. 2024 Mar 10:2024.03.08.583994. doi: 10.1101/2024.03.08.583994.
10
A glimpse into the fungal metabolomic abyss: Novel network analysis reveals relationships between exogenous compounds and their outputs.
PNAS Nexus. 2023 Sep 29;2(10):pgad322. doi: 10.1093/pnasnexus/pgad322. eCollection 2023 Oct.

本文引用的文献

2
Plant-like biosynthesis of isoquinoline alkaloids in Aspergillus fumigatus.
Nat Chem Biol. 2016 Jun;12(6):419-24. doi: 10.1038/nchembio.2061. Epub 2016 Apr 11.
6
8
Methionine AminoPeptidase Type-2 Inhibitors Targeting Angiogenesis.
Curr Top Med Chem. 2016;16(13):1478-88. doi: 10.2174/1568026615666150915121204.
9
Translating biosynthetic gene clusters into fungal armor and weaponry.
Nat Chem Biol. 2015 Sep;11(9):671-7. doi: 10.1038/nchembio.1897.
10
Identification of the antiphagocytic trypacidin gene cluster in the human-pathogenic fungus Aspergillus fumigatus.
Appl Microbiol Biotechnol. 2015 Dec;99(23):10151-61. doi: 10.1007/s00253-015-6898-1. Epub 2015 Aug 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验