Smith Tom, Heger Andreas, Sudbery Ian
Computational Genomics Analysis and Training Programme, MRC WIMM Centre for Computational Biology, University of Oxford, Oxford OX3 9DS, United Kingdom.
Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom.
Genome Res. 2017 Mar;27(3):491-499. doi: 10.1101/gr.209601.116. Epub 2017 Jan 18.
Unique Molecular Identifiers (UMIs) are random oligonucleotide barcodes that are increasingly used in high-throughput sequencing experiments. Through a UMI, identical copies arising from distinct molecules can be distinguished from those arising through PCR amplification of the same molecule. However, bioinformatic methods to leverage the information from UMIs have yet to be formalized. In particular, sequencing errors in the UMI sequence are often ignored or else resolved in an ad hoc manner. We show that errors in the UMI sequence are common and introduce network-based methods to account for these errors when identifying PCR duplicates. Using these methods, we demonstrate improved quantification accuracy both under simulated conditions and real iCLIP and single-cell RNA-seq data sets. Reproducibility between iCLIP replicates and single-cell RNA-seq clustering are both improved using our proposed network-based method, demonstrating the value of properly accounting for errors in UMIs. These methods are implemented in the open source UMI-tools software package.
独特分子标识符(UMIs)是随机寡核苷酸条形码,在高通量测序实验中越来越常用。通过UMI,可以将源自不同分子的相同拷贝与通过同一分子的PCR扩增产生的拷贝区分开来。然而,利用UMI信息的生物信息学方法尚未正式确立。特别是,UMI序列中的测序错误常常被忽略,或者以临时的方式解决。我们表明,UMI序列中的错误很常见,并引入了基于网络的方法,在识别PCR重复序列时考虑这些错误。使用这些方法,我们在模拟条件以及真实的iCLIP和单细胞RNA测序数据集下均展示了提高的定量准确性。使用我们提出的基于网络的方法,iCLIP重复样本之间的可重复性和单细胞RNA测序聚类均得到改善,证明了正确考虑UMI错误的价值。这些方法在开源的UMI-tools软件包中实现。