Interdisciplinary Nanoscience Center (iNANO) and Center for DNA Nanotechnology (CDNA), Science and Technology, Aarhus University , Gustav Wieds Vej 14, DK-8000 Aarhus-C, Denmark.
Department of Chemistry, University of Oldenburg , 26111 Oldenburg, Germany.
J Phys Chem B. 2017 Feb 23;121(7):1552-1565. doi: 10.1021/acs.jpcb.6b12363. Epub 2017 Feb 8.
Unique electronic and ligand recognition properties of the DNA double helix provide basis for DNA applications in biomolecular electronic and biosensor devices. However, the relation between the structure of DNA at electrified interfaces and its electronic properties is still not well understood. Here, potential-driven changes in the submolecular structure of DNA double helices composed of either adenine-thymine (dAdT) or cytosine-guanine (dGdC) base pairs tethered to the gold electrodes are for the first time analyzed by in situ polarization modulation infrared reflection absorption spectroscopy (PM IRRAS) performed under the electrochemical control. It is shown that the conformation of the DNA duplexes tethered to gold electrodes via the C alkanethiol linker strongly depends on the nucleic acid sequence composition. The tilt of purine and pyrimidine rings of the complementary base pairs (dAdT and dGdC) depends on the potential applied to the electrode. By contrast, neither the conformation nor orientation of the ionic in character phosphate-sugar backbone is affected by the electrode potentials. At potentials more positive than the potential of zero charge (pzc), a gradual tilting of the double helix is observed. In this tilted orientation, the planes of the complementary purine and pyrimidine rings lie ideally parallel to each other. These potentials do not affect the integral stability of the DNA double helix at the charged interface. At potentials more negative than the pzc, DNA helices adopt a vertical to the gold surface orientation. Tilt of the purine and pyrimidine rings depends on the composition of the double helix. In monolayers composed of (dAdT) molecules the rings of the complementary base pairs lie parallel to each other. By contrast, the tilt of purine and pyrimidine rings in (dGdC) helices depends on the potential applied to the electrode. Such potential-induced mobility of the complementary base pairs can destabilize the helix structure at a submolecular level. These pioneer results on the potential-driven changes in the submolecular structure of double stranded DNA adsorbed on conductive supports contribute to further understanding of the potential-driven sequence-specific electronic properties of surface-tethered oligonucleotides.
DNA 双螺旋独特的电子和配体识别特性为 DNA 在生物分子电子学和生物传感器设备中的应用提供了基础。然而,在带电界面处 DNA 结构与其电子性质之间的关系仍未得到很好的理解。在这里,首次通过电化学控制下的原位极化调制红外反射吸收光谱(PM IRRAS)分析了由腺嘌呤-胸腺嘧啶(dAdT)或胞嘧啶-鸟嘌呤(dGdC)碱基对组成的 DNA 双螺旋在电势驱动下的亚分子结构变化。结果表明,通过 C 烷硫醇接头键合到金电极上的 DNA 双链的构象强烈依赖于核酸序列组成。互补碱基对(dAdT 和 dGdC)的嘌呤和嘧啶环的倾斜取决于施加到电极的电势。相比之下,离子性质的磷酸-糖骨架的构象和取向都不受电极电势的影响。在比零电荷电势(pzc)更正的电势下,观察到双链逐渐倾斜。在这种倾斜的取向中,互补嘌呤和嘧啶环的平面理想地彼此平行。这些电势不会影响带电荷界面处 DNA 双链的整体稳定性。在比 pzc 更负的电势下,DNA 螺旋采用垂直于金表面的取向。嘌呤和嘧啶环的倾斜取决于双链的组成。在由(dAdT)分子组成的单层中,互补碱基对的环彼此平行。相比之下,在(dGdC)螺旋中,嘌呤和嘧啶环的倾斜取决于施加到电极的电势。这种电势诱导的互补碱基对的迁移性可能会在亚分子水平上破坏螺旋结构的稳定性。这些关于吸附在导电基底上的双链 DNA 亚分子结构在电势驱动下变化的先驱性结果有助于进一步理解表面键合寡核苷酸的电势驱动的序列特异性电子性质。