Suppr超能文献

根和茎尖中TOR的差异激活与细胞增殖

Differential TOR activation and cell proliferation in root and shoot apexes.

作者信息

Li Xiaojuan, Cai Wenguo, Liu Yanlin, Li Hui, Fu Liwen, Liu Zengyu, Xu Lin, Liu Hongtao, Xu Tongda, Xiong Yan

机构信息

Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, People's Republic of China.

University of Chinese Academy of Sciences, Shanghai 201602, People's Republic of China.

出版信息

Proc Natl Acad Sci U S A. 2017 Mar 7;114(10):2765-2770. doi: 10.1073/pnas.1618782114. Epub 2017 Feb 21.

Abstract

The developmental plasticity of plants relies on the remarkable ability of the meristems to integrate nutrient and energy availability with environmental signals. Meristems in root and shoot apexes share highly similar molecular players but are spatially separated by soil. Whether and how these two meristematic tissues have differential activation requirements for local nutrient, hormone, and environmental cues (e.g., light) remain enigmatic in photosynthetic plants. Here, we report that the activation of root and shoot apexes relies on distinct glucose and light signals. Glucose energy signaling is sufficient to activate target of rapamycin (TOR) kinase in root apexes. In contrast, both the glucose and light signals are required for TOR activation in shoot apexes. Strikingly, exogenously applied auxin is able to replace light to activate TOR in shoot apexes and promote true leaf development. A relatively low concentration of auxin in the shoot and high concentration of auxin in the root might be responsible for this distinctive light requirement in root and shoot apexes, because light is required to promote auxin biosynthesis in the shoot. Furthermore, we reveal that the small GTPase Rho-related protein 2 (ROP2) transduces light-auxin signal to activate TOR by direct interaction, which, in turn, promotes transcription factors E2Fa,b for activating cell cycle genes in shoot apexes. Consistently, constitutively activated plants stimulate TOR in the shoot apex and cause true leaf development even without light. Together, our findings establish a pivotal hub role of TOR signaling in integrating different environmental signals to regulate distinct developmental transition and growth in the shoot and root.

摘要

植物的发育可塑性依赖于分生组织将养分和能量可用性与环境信号整合的非凡能力。根和茎尖的分生组织具有高度相似的分子成分,但在空间上被土壤隔开。在光合植物中,这两个分生组织对局部养分、激素和环境线索(如光)是否具有不同的激活需求以及如何具有不同的激活需求仍然是个谜。在这里,我们报告根和茎尖的激活依赖于不同的葡萄糖和光信号。葡萄糖能量信号足以激活根尖中的雷帕霉素靶蛋白(TOR)激酶。相比之下,茎尖中TOR的激活需要葡萄糖和光信号两者。令人惊讶的是,外源施加的生长素能够替代光来激活茎尖中的TOR并促进真叶发育。茎中相对较低浓度的生长素和根中较高浓度的生长素可能是根和茎尖对光有不同需求的原因,因为光对于茎中生长素的生物合成是必需的。此外,我们发现小GTP酶Rho相关蛋白2(ROP2)通过直接相互作用转导光-生长素信号来激活TOR,这反过来又促进转录因子E2Fa、b激活茎尖中的细胞周期基因。一致地,组成型激活的植物即使在没有光的情况下也能刺激茎尖中的TOR并导致真叶发育。总之,我们的发现确立了TOR信号在整合不同环境信号以调节茎和根中不同发育转变和生长方面的关键枢纽作用。

相似文献

1
Differential TOR activation and cell proliferation in root and shoot apexes.
Proc Natl Acad Sci U S A. 2017 Mar 7;114(10):2765-2770. doi: 10.1073/pnas.1618782114. Epub 2017 Feb 21.
2
Glucose-TOR signalling reprograms the transcriptome and activates meristems.
Nature. 2013 Apr 11;496(7444):181-6. doi: 10.1038/nature12030. Epub 2013 Mar 31.
3
COP1 integrates light signals to ROP2 for cell cycle activation.
Plant Signal Behav. 2017 Sep 2;12(9):e1363946. doi: 10.1080/15592324.2017.1363946. Epub 2017 Aug 14.
4
Converging Light, Energy and Hormonal Signaling Control Meristem Activity, Leaf Initiation, and Growth.
Plant Physiol. 2018 Feb;176(2):1365-1381. doi: 10.1104/pp.17.01730. Epub 2017 Dec 28.
6
TARGET OF RAPAMYCIN signaling plays a role in Arabidopsis growth promotion by Azospirillum brasilense Sp245.
Plant Sci. 2020 Apr;293:110416. doi: 10.1016/j.plantsci.2020.110416. Epub 2020 Jan 21.
7
The Arabidopsis bZIP11 transcription factor links low-energy signalling to auxin-mediated control of primary root growth.
PLoS Genet. 2017 Feb 3;13(2):e1006607. doi: 10.1371/journal.pgen.1006607. eCollection 2017 Feb.
8
Regulation of shoot and root development through mutual signaling.
Mol Plant. 2012 Sep;5(5):974-83. doi: 10.1093/mp/sss047. Epub 2012 May 24.
9
GTPase ROP2 binds and promotes activation of target of rapamycin, TOR, in response to auxin.
EMBO J. 2017 Apr 3;36(7):886-903. doi: 10.15252/embj.201694816. Epub 2017 Feb 28.

引用本文的文献

1
A century of : plant growth promotion and agricultural promise.
Plant Signal Behav. 2025 Dec 31;20(1):2551609. doi: 10.1080/15592324.2025.2551609. Epub 2025 Aug 27.
2
Signalling and regulation of plant development by carbon/nitrogen balance.
Physiol Plant. 2025 Mar-Apr;177(2):e70228. doi: 10.1111/ppl.70228.
4
Pupylation-Based Proximity Labeling Unravels a Comprehensive Protein and Phosphoprotein Interactome of the Arabidopsis TOR Complex.
Adv Sci (Weinh). 2025 May;12(19):e2414496. doi: 10.1002/advs.202414496. Epub 2025 Mar 24.
5
Bioinformatic insights into sugar signaling pathways in sugarcane growth.
Sci Rep. 2024 Oct 22;14(1):24935. doi: 10.1038/s41598-024-75220-8.
7
A Nitrogen-specific Interactome Analysis Sheds Light on the Role of the SnRK1 and TOR Kinases in Plant Nitrogen Signaling.
Mol Cell Proteomics. 2024 Oct;23(10):100842. doi: 10.1016/j.mcpro.2024.100842. Epub 2024 Sep 20.
8
CLAVATA3 Signaling Buffers Arabidopsis Shoot Apical Meristem Activity in Response to Photoperiod.
Int J Mol Sci. 2024 Aug 29;25(17):9357. doi: 10.3390/ijms25179357.
9
Communicating Across Cell Walls: Structure, Evolution, and Regulation of Plasmodesmatal Transport in Plants.
Results Probl Cell Differ. 2024;73:73-86. doi: 10.1007/978-3-031-62036-2_4.
10
Sugar signaling modulates SHOOT MERISTEMLESS expression and meristem function in .
Proc Natl Acad Sci U S A. 2024 Sep 10;121(37):e2408699121. doi: 10.1073/pnas.2408699121. Epub 2024 Sep 6.

本文引用的文献

2
Negative gravitropism in plant roots.
Nat Plants. 2016 Oct 17;2(11):16155. doi: 10.1038/nplants.2016.155.
6
TOR Signaling Promotes Accumulation of BZR1 to Balance Growth with Carbon Availability in Arabidopsis.
Curr Biol. 2016 Jul 25;26(14):1854-60. doi: 10.1016/j.cub.2016.05.005. Epub 2016 Jun 23.
8
TOR Signaling and Nutrient Sensing.
Annu Rev Plant Biol. 2016 Apr 29;67:261-85. doi: 10.1146/annurev-arplant-043014-114648. Epub 2016 Feb 22.
9
Novel links in the plant TOR kinase signaling network.
Curr Opin Plant Biol. 2015 Dec;28:83-91. doi: 10.1016/j.pbi.2015.09.006. Epub 2015 Oct 24.
10
Plant phototropic growth.
Curr Biol. 2015 May 4;25(9):R384-9. doi: 10.1016/j.cub.2015.03.020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验