Suppr超能文献

轴突能量稳态与线粒体运输和锚定之间的相互作用

The Interplay of Axonal Energy Homeostasis and Mitochondrial Trafficking and Anchoring.

作者信息

Sheng Zu-Hang

机构信息

Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD 20892-3706, USA.

出版信息

Trends Cell Biol. 2017 Jun;27(6):403-416. doi: 10.1016/j.tcb.2017.01.005. Epub 2017 Feb 20.

Abstract

Mitochondria are key cellular power plants essential for neuronal growth, survival, function, and regeneration after injury. Given their unique morphological features, neurons face exceptional challenges in maintaining energy homeostasis at distal synapses and growth cones where energy is in high demand. Efficient regulation of mitochondrial trafficking and anchoring is critical for neurons to meet altered energy requirements. Mitochondrial dysfunction and impaired transport have been implicated in several major neurological disorders. Thus, research into energy-mediated regulation of mitochondrial recruitment and redistribution is an important emerging frontier. In this review, I discuss new insights into the mechanisms regulating mitochondrial trafficking and anchoring, and provide an updated overview of how mitochondrial motility maintains energy homeostasis in axons, thus contributing to neuronal growth, regeneration, and synaptic function.

摘要

线粒体是细胞的关键能量工厂,对神经元的生长、存活、功能及损伤后的再生至关重要。鉴于其独特的形态特征,神经元在维持远端突触和生长锥处的能量平衡上面临特殊挑战,因为这些部位对能量的需求很高。线粒体运输和锚定的有效调节对于神经元满足变化的能量需求至关重要。线粒体功能障碍和运输受损与多种主要神经系统疾病有关。因此,对能量介导的线粒体募集和重新分布的调节进行研究是一个重要的新兴前沿领域。在这篇综述中,我将讨论调节线粒体运输和锚定机制的新见解,并提供关于线粒体运动如何维持轴突能量平衡从而促进神经元生长、再生和突触功能的最新概述。

相似文献

1
The Interplay of Axonal Energy Homeostasis and Mitochondrial Trafficking and Anchoring.
Trends Cell Biol. 2017 Jun;27(6):403-416. doi: 10.1016/j.tcb.2017.01.005. Epub 2017 Feb 20.
2
Developmental regulation of microtubule-based trafficking and anchoring of axonal mitochondria in health and diseases.
Dev Neurobiol. 2021 Apr;81(3):284-299. doi: 10.1002/dneu.22748. Epub 2020 May 2.
3
Regulation of mitochondrial transport in neurons.
Exp Cell Res. 2015 May 15;334(1):35-44. doi: 10.1016/j.yexcr.2015.01.004. Epub 2015 Jan 19.
4
Mechanisms for the maintenance and regulation of axonal energy supply.
J Neurosci Res. 2019 Aug;97(8):897-913. doi: 10.1002/jnr.24411. Epub 2019 Mar 18.
5
Programming axonal mitochondrial maintenance and bioenergetics in neurodegeneration and regeneration.
Neuron. 2022 Jun 15;110(12):1899-1923. doi: 10.1016/j.neuron.2022.03.015. Epub 2022 Apr 16.
6
Characterization of mitochondrial transport in neurons.
Methods Enzymol. 2014;547:75-96. doi: 10.1016/B978-0-12-801415-8.00005-9.
7
Mitochondrial trafficking and anchoring in neurons: New insight and implications.
J Cell Biol. 2014 Mar 31;204(7):1087-98. doi: 10.1083/jcb.201312123.
8
The cross-talk of energy sensing and mitochondrial anchoring sustains synaptic efficacy by maintaining presynaptic metabolism.
Nat Metab. 2020 Oct;2(10):1077-1095. doi: 10.1038/s42255-020-00289-0. Epub 2020 Oct 5.
10
Facilitation of axon regeneration by enhancing mitochondrial transport and rescuing energy deficits.
J Cell Biol. 2016 Jul 4;214(1):103-19. doi: 10.1083/jcb.201605101. Epub 2016 Jun 7.

引用本文的文献

1
Molecular mechanisms of mitochondrial quality control.
Transl Neurodegener. 2025 Sep 1;14(1):45. doi: 10.1186/s40035-025-00505-5.
2
Repurposing the hypoglycaemic agents for neuroinflammation, a comprehensive review.
3 Biotech. 2025 Sep;15(9):281. doi: 10.1007/s13205-025-04455-7. Epub 2025 Aug 5.
4
Mitochondrial dynamics reveal potential to facilitate axonal regeneration after spinal cord injury.
J Transl Med. 2025 Jun 2;23(1):617. doi: 10.1186/s12967-025-06611-2.
5
Research status of regenerative difficulties after central nervous system injury.
Regen Ther. 2025 Apr 30;29:493-498. doi: 10.1016/j.reth.2025.04.011. eCollection 2025 Jun.
8
Synaptic-mitochondrial transport: mechanisms in neural adaptation and degeneration.
Mol Cell Biochem. 2025 Jun;480(6):3399-3411. doi: 10.1007/s11010-025-05209-y. Epub 2025 Jan 22.
9
Neuronal activity inhibits mitochondrial transport only in synaptically connected segments of the axon.
Front Cell Neurosci. 2024 Dec 4;18:1509283. doi: 10.3389/fncel.2024.1509283. eCollection 2024.

本文引用的文献

1
Mitochondria Localize to Injured Axons to Support Regeneration.
Neuron. 2016 Dec 21;92(6):1308-1323. doi: 10.1016/j.neuron.2016.11.025.
2
The Mammalian-Specific Protein Armcx1 Regulates Mitochondrial Transport during Axon Regeneration.
Neuron. 2016 Dec 21;92(6):1294-1307. doi: 10.1016/j.neuron.2016.10.060.
5
Mitochondrial Mobility and Neuronal Recovery.
N Engl J Med. 2016 Sep 29;375(13):1295-6. doi: 10.1056/NEJMcibr1607955.
6
Mitochondrial Dynamics in Visual Cortex Are Limited In Vivo and Not Affected by Axonal Structural Plasticity.
Curr Biol. 2016 Oct 10;26(19):2609-2616. doi: 10.1016/j.cub.2016.07.033. Epub 2016 Sep 15.
7
Progressive Decrease of Mitochondrial Motility during Maturation of Cortical Axons In Vitro and In Vivo.
Curr Biol. 2016 Oct 10;26(19):2602-2608. doi: 10.1016/j.cub.2016.07.064. Epub 2016 Sep 15.
8
Facilitation of axon regeneration by enhancing mitochondrial transport and rescuing energy deficits.
J Cell Biol. 2016 Jul 4;214(1):103-19. doi: 10.1083/jcb.201605101. Epub 2016 Jun 7.
9
Mitochondrial biogenesis is required for axonal growth.
Development. 2016 Jun 1;143(11):1981-92. doi: 10.1242/dev.128926. Epub 2016 Apr 27.
10
Metabolic regulation of mitochondrial dynamics.
J Cell Biol. 2016 Feb 15;212(4):379-87. doi: 10.1083/jcb.201511036. Epub 2016 Feb 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验