Suppr超能文献

食物反应性调节……中的发作性行为状态。 (原文“in”后面缺少具体内容)

Food responsiveness regulates episodic behavioral states in .

作者信息

McCloskey Richard J, Fouad Anthony D, Churgin Matthew A, Fang-Yen Christopher

机构信息

Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania; and.

Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania; and

出版信息

J Neurophysiol. 2017 May 1;117(5):1911-1934. doi: 10.1152/jn.00555.2016. Epub 2017 Feb 22.

Abstract

Animals optimize survival and reproduction in part through control of behavioral states, which depend on an organism's internal and external environments. In the nematode a variety of behavioral states have been described, including roaming, dwelling, quiescence, and episodic swimming. These states have been considered in isolation under varied experimental conditions, making it difficult to establish a unified picture of how they are regulated. Using long-term imaging, we examined episodic behavioral states under varied mechanical and nutritional environments. We found that animals alternate between high-activity (active) and low-activity (sedentary) episodes in any mechanical environment, while the incidence of episodes and their behavioral composition depend on food levels. During active episodes, worms primarily roam, as characterized by continuous whole body movement. During sedentary episodes, animals exhibit dwelling (slower movements confined to the anterior half of the body) and quiescence (a complete lack of movement). Roaming, dwelling, and quiescent states are manifest not only through locomotory characteristics but also in pharyngeal pumping (feeding) and in egg-laying behaviors. Next, we analyzed the genetic basis of behavioral states. We found that modulation of behavioral states depends on neuropeptides and insulin-like signaling in the nervous system. Sensory neurons and the Foraging homolog EGL-4 regulate behavior through control of active/sedentary episodes. Optogenetic stimulation of dopaminergic and serotonergic neurons induced dwelling, implicating dopamine as a dwell-promoting neurotransmitter. Our findings provide a more unified description of behavioral states and suggest that perception of nutrition is a conserved mechanism for regulating animal behavior. One strategy by which animals adapt to their internal states and external environments is by adopting behavioral states. The roundworm is an attractive model for investigating how behavioral states are genetically and neuronally controlled. Here we describe the hierarchical organization of behavioral states characterized by locomotory activity, feeding, and egg-laying. We show that decisions to engage in these behaviors are controlled by the nervous system through insulin-like signaling and the perception of food.

摘要

动物通过控制行为状态来部分优化生存和繁殖,行为状态取决于生物体的内部和外部环境。在线虫中,已经描述了多种行为状态,包括漫游、栖息、静止和间歇性游泳。这些状态在不同的实验条件下被单独考虑,因此难以建立它们如何被调节的统一图景。我们使用长期成像技术,在不同的机械和营养环境下研究了间歇性行为状态。我们发现,在任何机械环境中,动物都会在高活动(活跃)和低活动(久坐)阶段之间交替,而阶段的发生率及其行为组成取决于食物水平。在活跃阶段,蠕虫主要进行漫游,其特征是全身持续运动。在久坐阶段,动物表现出栖息(局限于身体前半部分的较慢运动)和静止(完全没有运动)。漫游、栖息和静止状态不仅通过运动特征表现出来,还体现在咽部抽吸(进食)和产卵行为中。接下来,我们分析了行为状态的遗传基础。我们发现行为状态的调节依赖于神经系统中的神经肽和胰岛素样信号传导。感觉神经元和觅食同源物EGL-4通过控制活跃/久坐阶段来调节行为。对多巴胺能和5-羟色胺能神经元的光遗传学刺激诱导了栖息,这表明多巴胺是一种促进栖息的神经递质。我们的研究结果对行为状态提供了更统一的描述,并表明对营养的感知是调节动物行为的一种保守机制。动物适应其内部状态和外部环境的一种策略是采用行为状态。蛔虫是研究行为状态如何在基因和神经水平上被控制的一个有吸引力的模型。在这里,我们描述了以运动活动、进食和产卵为特征的行为状态的层次组织。我们表明,参与这些行为的决定是由神经系统通过胰岛素样信号传导和对食物的感知来控制的。

相似文献

1
Food responsiveness regulates episodic behavioral states in .
J Neurophysiol. 2017 May 1;117(5):1911-1934. doi: 10.1152/jn.00555.2016. Epub 2017 Feb 22.
2
Sensory neurons couple arousal and foraging decisions in .
Elife. 2023 Dec 27;12:RP88657. doi: 10.7554/eLife.88657.
3
The ETS-5 transcription factor regulates activity states in by controlling satiety.
Proc Natl Acad Sci U S A. 2017 Feb 28;114(9):E1651-E1658. doi: 10.1073/pnas.1610673114. Epub 2017 Feb 13.
5
Antagonistic Serotonergic and Octopaminergic Neural Circuits Mediate Food-Dependent Locomotory Behavior in .
J Neurosci. 2017 Aug 16;37(33):7811-7823. doi: 10.1523/JNEUROSCI.2636-16.2017. Epub 2017 Jul 11.
6
G protein-coupled receptor kinase-2 (GRK-2) controls exploration through neuropeptide signaling in Caenorhabditis elegans.
PLoS Genet. 2023 Jan 18;19(1):e1010613. doi: 10.1371/journal.pgen.1010613. eCollection 2023 Jan.
7
Discriminating between sleep and exercise-induced fatigue using computer vision and behavioral genetics.
J Neurogenet. 2020 Sep-Dec;34(3-4):453-465. doi: 10.1080/01677063.2020.1804565. Epub 2020 Aug 19.
8
Episodic swimming behavior in the nematode C. elegans.
J Exp Biol. 2008 Dec;211(Pt 23):3703-11. doi: 10.1242/jeb.023606.
10
Automatically tracking feeding behavior in populations of foraging .
Elife. 2022 Sep 9;11:e77252. doi: 10.7554/eLife.77252.

引用本文的文献

1
Automated multimodal imaging of Caenorhabditis elegans behavior in multi-well plates.
Genetics. 2024 Oct 3;228(4). doi: 10.1093/genetics/iyae158.
3
Mitochondrial energy state controls AMPK-mediated foraging behavior in .
Sci Adv. 2024 Apr 19;10(16):eadm8815. doi: 10.1126/sciadv.adm8815. Epub 2024 Apr 17.
4
Outcrossing in increases in response to food limitation.
Ecol Evol. 2024 Mar 20;14(3):e11166. doi: 10.1002/ece3.11166. eCollection 2024 Mar.
5
Sensory neurons couple arousal and foraging decisions in .
Elife. 2023 Dec 27;12:RP88657. doi: 10.7554/eLife.88657.
6
Caenorhabditis elegans foraging patterns follow a simple rule of thumb.
Commun Biol. 2023 Aug 14;6(1):841. doi: 10.1038/s42003-023-05220-3.
7
G protein-coupled receptor kinase-2 (GRK-2) controls exploration through neuropeptide signaling in Caenorhabditis elegans.
PLoS Genet. 2023 Jan 18;19(1):e1010613. doi: 10.1371/journal.pgen.1010613. eCollection 2023 Jan.
8
Diet-responsive transcriptional regulation of insulin in a single neuron controls systemic metabolism.
PLoS Biol. 2022 May 20;20(5):e3001655. doi: 10.1371/journal.pbio.3001655. eCollection 2022 May.
9
Microplastics and Their Impact on Reproduction-Can we Learn From the Model?
Front Toxicol. 2022 Mar 24;4:748912. doi: 10.3389/ftox.2022.748912. eCollection 2022.
10
An Imaging System for Monitoring C. elegans Behavior and Aging.
Methods Mol Biol. 2022;2468:329-338. doi: 10.1007/978-1-0716-2181-3_18.

本文引用的文献

1
Context-dependent regulation of feeding behaviour by the insulin receptor, DAF-2, in Caenorhabditis elegans.
Invert Neurosci. 2016 Jun;16(2):4. doi: 10.1007/s10158-016-0187-2. Epub 2016 May 21.
2
3
.
Elife. 2016 Jan 29;5:e12572. doi: 10.7554/eLife.12572.
4
Call it Worm Sleep.
Trends Neurosci. 2016 Feb;39(2):54-62. doi: 10.1016/j.tins.2015.12.005. Epub 2015 Dec 30.
5
An Imaging System for C. elegans Behavior.
Methods Mol Biol. 2015;1327:199-207. doi: 10.1007/978-1-4939-2842-2_14.
7
Cellular stress induces a protective sleep-like state in C. elegans.
Curr Biol. 2014 Oct 20;24(20):2399-405. doi: 10.1016/j.cub.2014.08.040. Epub 2014 Sep 25.
8
FMRFamide-like FLP-13 neuropeptides promote quiescence following heat stress in Caenorhabditis elegans.
Curr Biol. 2014 Oct 20;24(20):2406-10. doi: 10.1016/j.cub.2014.08.037. Epub 2014 Sep 25.
9
Why do sleeping nematodes adopt a hockey-stick-like posture?
PLoS One. 2014 Jul 15;9(7):e101162. doi: 10.1371/journal.pone.0101162. eCollection 2014.
10
Measurements of behavioral quiescence in Caenorhabditis elegans.
Methods. 2014 Aug 1;68(3):500-7. doi: 10.1016/j.ymeth.2014.03.009. Epub 2014 Mar 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验