Hernandez Lorraine D, Kroh Heather K, Hsieh Edward, Yang Xiaoyu, Beaumont Maribel, Sheth Payal R, DiNunzio Edward, Rutherford Stacey A, Ohi Melanie D, Ermakov Grigori, Xiao Li, Secore Susan, Karczewski Jerzy, Racine Fred, Mayhood Todd, Fischer Paul, Sher Xinwei, Gupta Pulkit, Lacy D Borden, Therien Alex G
Merck & Co., Inc., Kenilworth, NJ, 07033, USA.
Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.
J Mol Biol. 2017 Apr 7;429(7):1030-1044. doi: 10.1016/j.jmb.2017.02.010. Epub 2017 Feb 21.
The exotoxins toxin A (TcdA) and toxin B (TcdB) are produced by the bacterial pathogen Clostridium difficile and are responsible for the pathology associated with C. difficile infection (CDI). The antitoxin antibodies actoxumab and bezlotoxumab bind to and neutralize TcdA and TcdB, respectively. Bezlotoxumab was recently approved by the FDA for reducing the recurrence of CDI. We have previously shown that a single molecule of bezlotoxumab binds to two distinct epitopes within the TcdB combined repetitive oligopeptide (CROP) domain, preventing toxin binding to host cells. In this study, we characterize the binding of actoxumab to TcdA and examine its mechanism of toxin neutralization. Using a combination of approaches including a number of biophysical techniques, we show that there are two distinct actoxumab binding sites within the CROP domain of TcdA centered on identical amino acid sequences at residues 2162-2189 and 2410-2437. Actoxumab binding caused the aggregation of TcdA especially at higher antibody:toxin concentration ratios. Actoxumab prevented the association of TcdA with target cells demonstrating that actoxumab neutralizes toxin activity by inhibiting the first step of the intoxication cascade. This mechanism of neutralization is similar to that observed with bezlotoxumab and TcdB. Comparisons of the putative TcdA epitope sequences across several C. difficile ribotypes and homologous repeat sequences within TcdA suggest a structural basis for observed differences in actoxumab binding and/or neutralization potency. These data provide a mechanistic basis for the protective effects of the antibody in vitro and in vivo, including in various preclinical models of CDI.
外毒素毒素A(TcdA)和毒素B(TcdB)由细菌病原体艰难梭菌产生,是艰难梭菌感染(CDI)相关病理的成因。抗毒素抗体actoxumab和bezlotoxumab分别结合并中和TcdA和TcdB。Bezlotoxumab最近被美国食品药品监督管理局(FDA)批准用于降低CDI的复发率。我们之前已经表明,单个bezlotoxumab分子与TcdB的组合重复寡肽(CROP)结构域内的两个不同表位结合,从而阻止毒素与宿主细胞结合。在本研究中,我们对actoxumab与TcdA的结合进行了表征,并研究了其毒素中和机制。通过结合包括多种生物物理技术在内的一系列方法,我们表明在TcdA的CROP结构域内有两个不同的actoxumab结合位点,其中心位于2162 - 2189位和2410 - 2437位的相同氨基酸序列上。Actoxumab的结合导致TcdA聚集,尤其是在抗体与毒素浓度比更高时。Actoxumab阻止了TcdA与靶细胞的结合,表明actoxumab通过抑制中毒级联反应的第一步来中和毒素活性。这种中和机制与观察到的bezlotoxumab和TcdB的机制相似。对几种艰难梭菌核糖体分型中假定的TcdA表位序列以及TcdA内同源重复序列的比较表明了观察到的actoxumab结合和/或中和效力差异的结构基础。这些数据为抗体在体外和体内(包括在各种CDI临床前模型中)的保护作用提供了机制基础。