Suppr超能文献

运用基于数据驱动的代理模型预测新发传染病。

Using data-driven agent-based models for forecasting emerging infectious diseases.

机构信息

Network Dynamics and Simulation Science Laboratory, Biocomplexity Institute of Virginia Tech, United States.

Social and Decision Analytics Laboratory, Biocomplexity Institute of Virginia Tech, United States; Department of Statistics, Virginia Tech, United States.

出版信息

Epidemics. 2018 Mar;22:43-49. doi: 10.1016/j.epidem.2017.02.010. Epub 2017 Feb 22.

Abstract

Producing timely, well-informed and reliable forecasts for an ongoing epidemic of an emerging infectious disease is a huge challenge. Epidemiologists and policy makers have to deal with poor data quality, limited understanding of the disease dynamics, rapidly changing social environment and the uncertainty on effects of various interventions in place. Under this setting, detailed computational models provide a comprehensive framework for integrating diverse data sources into a well-defined model of disease dynamics and social behavior, potentially leading to better understanding and actions. In this paper, we describe one such agent-based model framework developed for forecasting the 2014-2015 Ebola epidemic in Liberia, and subsequently used during the Ebola forecasting challenge. We describe the various components of the model, the calibration process and summarize the forecast performance across scenarios of the challenge. We conclude by highlighting how such a data-driven approach can be refined and adapted for future epidemics, and share the lessons learned over the course of the challenge.

摘要

对于正在发生的新发传染病疫情,及时、准确、可靠的预测是一项巨大的挑战。流行病学家和政策制定者必须应对数据质量差、对疾病动态的了解有限、快速变化的社会环境以及现有各种干预措施效果的不确定性等问题。在这种情况下,详细的计算模型为将各种数据源整合到疾病动态和社会行为的明确定义模型中提供了一个全面的框架,从而有可能更好地理解和采取行动。在本文中,我们描述了一个用于预测 2014-2015 年利比里亚埃博拉疫情的基于代理的模型框架,并随后在埃博拉预测挑战赛中使用。我们描述了模型的各个组成部分、校准过程,并总结了挑战赛中各种场景下的预测性能。最后,我们强调了如何针对未来的疫情对这种数据驱动方法进行改进和调整,并分享在挑战赛过程中吸取的经验教训。

相似文献

1
Using data-driven agent-based models for forecasting emerging infectious diseases.
Epidemics. 2018 Mar;22:43-49. doi: 10.1016/j.epidem.2017.02.010. Epub 2017 Feb 22.
2
Forecasting Ebola with a regression transmission model.
Epidemics. 2018 Mar;22:50-55. doi: 10.1016/j.epidem.2017.02.009. Epub 2017 Feb 27.
3
The RAPIDD Ebola forecasting challenge: Model description and synthetic data generation.
Epidemics. 2018 Mar;22:3-12. doi: 10.1016/j.epidem.2017.09.001. Epub 2017 Sep 20.
4
The RAPIDD ebola forecasting challenge: Synthesis and lessons learnt.
Epidemics. 2018 Mar;22:13-21. doi: 10.1016/j.epidem.2017.08.002. Epub 2017 Aug 26.
5
Using phenomenological models for forecasting the 2015 Ebola challenge.
Epidemics. 2018 Mar;22:62-70. doi: 10.1016/j.epidem.2016.11.002. Epub 2016 Nov 19.
6
Two approaches to forecast Ebola synthetic epidemics.
Epidemics. 2018 Mar;22:36-42. doi: 10.1016/j.epidem.2017.02.011. Epub 2017 Feb 24.
7
Real-time forecasting of infectious disease dynamics with a stochastic semi-mechanistic model.
Epidemics. 2018 Mar;22:56-61. doi: 10.1016/j.epidem.2016.11.003. Epub 2016 Dec 16.
8
The IDEA model: A single equation approach to the Ebola forecasting challenge.
Epidemics. 2018 Mar;22:71-77. doi: 10.1016/j.epidem.2016.09.001. Epub 2016 Sep 28.
10
A novel sub-epidemic modeling framework for short-term forecasting epidemic waves.
BMC Med. 2019 Aug 22;17(1):164. doi: 10.1186/s12916-019-1406-6.

引用本文的文献

2
Behavior-driven forecasts of neighborhood-level COVID-19 spread in New York City.
PLoS Comput Biol. 2025 Apr 29;21(4):e1012979. doi: 10.1371/journal.pcbi.1012979. eCollection 2025 Apr.
4
Calibration verification for stochastic agent-based disease spread models.
PLoS One. 2024 Dec 10;19(12):e0315429. doi: 10.1371/journal.pone.0315429. eCollection 2024.
5
Modeling COVID-19 spread using multi-agent simulation with small-world network approach.
BMC Public Health. 2024 Mar 2;24(1):672. doi: 10.1186/s12889-024-18157-x.
6
Generating synthetic population for simulating the spatiotemporal dynamics of epidemics.
PLoS Comput Biol. 2024 Feb 12;20(2):e1011810. doi: 10.1371/journal.pcbi.1011810. eCollection 2024 Feb.
7
Local protection bubbles: an interpretation of the slowdown in the spread of coronavirus in the city of São Paulo, Brazil, in July 2020.
Cad Saude Publica. 2023 Dec 15;39(11):e00109522. doi: 10.1590/0102-311XEN109522. eCollection 2023.
8
Infection prediction in swine populations with machine learning.
Sci Rep. 2023 Oct 18;13(1):17738. doi: 10.1038/s41598-023-43472-5.
9
Mobility constraints in segregation models.
Sci Rep. 2023 Jul 26;13(1):12087. doi: 10.1038/s41598-023-38519-6.
10
On learning agent-based models from data.
Sci Rep. 2023 Jun 7;13(1):9268. doi: 10.1038/s41598-023-35536-3.

本文引用的文献

2
Ebola virus disease in West Africa--the first 9 months of the epidemic and forward projections.
N Engl J Med. 2014 Oct 16;371(16):1481-95. doi: 10.1056/NEJMoa1411100. Epub 2014 Sep 22.
3
Ebola--underscoring the global disparities in health care resources.
N Engl J Med. 2014 Sep 18;371(12):1084-6. doi: 10.1056/NEJMp1409494. Epub 2014 Aug 13.
4
Big data. The parable of Google Flu: traps in big data analysis.
Science. 2014 Mar 14;343(6176):1203-5. doi: 10.1126/science.1248506.
5
A Simulation Optimization Approach to Epidemic Forecasting.
PLoS One. 2013 Jun 27;8(6):e67164. doi: 10.1371/journal.pone.0067164. Print 2013.
6
Assessing Google flu trends performance in the United States during the 2009 influenza virus A (H1N1) pandemic.
PLoS One. 2011;6(8):e23610. doi: 10.1371/journal.pone.0023610. Epub 2011 Aug 19.
7
Understanding the dynamics of Ebola epidemics.
Epidemiol Infect. 2007 May;135(4):610-21. doi: 10.1017/S0950268806007217. Epub 2006 Sep 26.
8
Modelling disease outbreaks in realistic urban social networks.
Nature. 2004 May 13;429(6988):180-4. doi: 10.1038/nature02541.
9
Emerging infectious diseases of wildlife--threats to biodiversity and human health.
Science. 2000 Jan 21;287(5452):443-9. doi: 10.1126/science.287.5452.443.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验